Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Hepatology ; 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38385945

RESUMO

BACKGROUND AND AIMS: Metabolic dysfunction-associated steatotic liver disease (MASLD) encompasses a broad and continuous spectrum of liver diseases ranging from fatty liver to steatohepatitis. The intricate interactions of genetic, epigenetic, and environmental factors in the development and progression of MASLD remain elusive. Here, we aimed to achieve an integrative understanding of the genomic and transcriptomic alterations throughout the progression of MASLD. APPROACH AND RESULTS: RNA-Seq profiling (n = 146) and whole-exome sequencing (n = 132) of MASLD liver tissue samples identified 3 transcriptomic subtypes (G1-G3) of MASLD, which were characterized by stepwise pathological and molecular progression of the disease. Macrophage-driven inflammatory activities were identified as a key feature for differentiating these subtypes. This subtype-discriminating macrophage interplay was significantly associated with both the expression and genetic variation of the dsDNA sensor IFI16 (rs6940, A>T, T779S), establishing it as a fundamental molecular factor in MASLD progression. The in vitro dsDNA-IFI16 binding experiments and structural modeling revealed that the IFI16 variant exhibited increased stability and stronger dsDNA binding affinity compared to the wild-type. Further downstream investigation suggested that the IFI16 variant exacerbated DNA sensing-mediated inflammatory signals through mitochondrial dysfunction-related signaling of the IFI16-PYCARD-CASP1 pathway. CONCLUSIONS: This study unveils a comprehensive understanding of MASLD progression through transcriptomic classification, highlighting the crucial roles of IFI16 variants. Targeting the IFI16-PYCARD-CASP1 pathway may pave the way for the development of novel diagnostics and therapeutics for MASLD.

2.
Annu Rev Phys Chem ; 73: 453-477, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35113740

RESUMO

All solid materials are created via nucleation. In this evolutionary process, nuclei form in solution or at interfaces, expand by monomeric growth and oriented attachment, and undergo phase transformation. Nucleation determines the location and size of nuclei, whereas growth controls the size, shape, and aggregation of newly formed nanoparticles. These physical properties of nanoparticles can affect their functionalities, reactivities, and porosities, as well as their fate and transport. Recent advances in nanoscale analytical technologies allow in situ real-time observations, enabling us to uncover the molecular nature of nuclei and the critical controlling factors for nucleation and growth. Although a single theory cannot yet fully explain such evolving processes, we have started to better understand how both classical andnonclassical theories can work together, and we have begun to recognize the importance of connecting these theories. This review discusses the recent convergence of knowledge about the nucleation and growth of nanoparticles.


Assuntos
Nanopartículas
3.
Nanotechnology ; 32(16): 165202, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33302263

RESUMO

Through time-dependent defect spectroscopy and low-frequency noise measurements, we investigate and characterize the differences of carrier trapping processes occurred by different interfaces (top/sidewall) of the gate-all-around silicon nanosheet field-effect transistor (GAA SiNS FET). In a GAA SiNS FET fabricated by the top-down process, the traps at the sidewall interface significantly affect the device performance as the width decreases. Compare to expectations, as the width of the device decreases, the subthreshold swing (SS) increases from 120 to 230 mV/dec, resulting in less gate controllability. In narrow-width devices, the effect of traps located at the sidewall interface is significantly dominant, and the 1/f 2 noise, also known as generation-recombination (G-R) noise, is clearly appeared with an increased time constant (τ i ). In addition, the probability density distributions for the normalized current fluctuations (ΔI D) show only one Gaussian in wide-width devices, whereas they are separated into four Gaussians with increased in narrow-width devices. Therefore, fitting is performed through the carrier number fluctuation-correlated with mobility fluctuations model that separately considered the effects of sidewall. In narrow-width GAA SiNS FETs, consequently, the extracted interface trap densities (N T ) distribution becomes more dominant, and the scattering parameter ([Formula: see text]) distribution increases by more than double.

4.
Environ Sci Technol ; 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34314155

RESUMO

Unveiling the effects of an environmental abundant anion "sulfate" on the formation of calcium carbonate (CaCO3) is essential to understand the formation mechanisms of biominerals like corals and brachiopod shells, as well as the scale formation in desalination systems. However, it was experimentally challenging to elucidate the sulfate-CaCO3 interactions at the explicit first step of CaCO3 formation: nucleation. In addition, there is limited quantitative information on the precise control of nucleation kinetics. Here, heterogeneous CaCO3 nucleation is monitored in real time as a function of sulfate concentrations (0-10 mM Na2SO4) using synchrotron-based grazing incidence X-ray scattering techniques. The results showed that sulfate can be incorporated in the nuclei, resulting in a nearly 90% decrease in the CaCO3 nucleation rate, causing a 120% increase in the CaCO3 nucleus size, and inhibiting the vaterite-to-calcite phase transformation. Moreover, this work quantitatively relates sulfate concentrations to the effective interfacial energies of CaCO3 and finds a non-linear trend, suggesting that CaCO3 heterogeneous nucleation is more sensitive at a low sulfate concentration. This study can be readily extended to study other additives and obtain quantitative relationships between additive concentrations and CaCO3 interfacial energies, a key step toward achieving natural and engineered controls on CaCO3 nucleation.

5.
Sensors (Basel) ; 21(4)2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33578768

RESUMO

Recently, drone shows have impressed many people through a convergence of technology and art. However, these demonstrations have limited operating hours based on the battery life. Thus, it is important to minimize the unnecessary transition time between scenes without collision to increase operating time. This paper proposes a fast and energy-efficient scene transition algorithm that minimizes the transition times between scenes. This algorithm reduces the maximum drone movement distance to increase the operating time and exploits a multilayer method to avoid collisions between drones. In addition, a swarming flight system including robust communication and position estimation is presented as a concrete experimental system. The proposed algorithm was verified using the swarming flight system at a drone show performed with 100 drones.

6.
Sensors (Basel) ; 21(23)2021 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-34884121

RESUMO

The deficiency and excess of vitamin D cause various diseases, necessitating continuous management; but it is not easy to accurately measure the serum vitamin D level in the body using a non-invasive method. The aim of this study is to investigate the correlation between vitamin D levels, body information obtained by an InBody scan, and blood parameters obtained during health checkups, to determine the optimum frequency of vitamin D quantification in the skin and to propose a vitamin D measurement method based on impedance. We assessed body composition, arm impedance, and blood vitamin D concentrations to determine the correlation between each element using multiple machine learning analyses and an algorithm which predicted the concentration of vitamin D in the body using the impedance value developed. Body fat percentage obtained from the InBody device and blood parameters albumin and lactate dehydrogenase correlated with vitamin D level. An impedance measurement frequency of 21.1 Hz was reflected in the blood vitamin D concentration at optimum levels, and a confidence level of about 75% for vitamin D in the body was confirmed. These data demonstrate that the concentration of vitamin D in the body can be predicted using impedance measurement values. This method can be used for predicting and monitoring vitamin D-related diseases and may be incorporated in wearable health measurement devices.


Assuntos
Técnicas Biossensoriais , Vitamina D , Algoritmos , Composição Corporal , Impedância Elétrica
7.
Molecules ; 26(20)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34684753

RESUMO

Angelica polymorpha Maxim. (APM) is used in traditional medicine to treat chronic gastritis, rheumatic pain, and duodenal bulbar ulcers. However, it is not known whether APM has epidermis-associated biological activities. Here, we investigated the effects of APM flower absolute (APMFAb) on responses associated with skin wound healing and whitening using epidermal cells. APMFAb was obtained by solvent extraction and its composition was analyzed by GC/MS. Water-soluble tetrazolium salt, 5-bromo-2'-deoxyuridine incorporation, Boyden chamber, sprouting, and enzyme-linked immunosorbent assays and immunoblotting were used to examine the effects of APMFAb on HaCaT keratinocytes and B16BL6 melanoma cells. APMFAb contained five compounds and induced keratinocyte migration, proliferation, and type IV collagen synthesis. APMFAb also induced the phosphorylations of ERK1/2, JNK, p38 mitogen-activated protein kinase, and AKT in keratinocytes. In addition, APMFAb decreased serum-induced B16BL6 cell proliferation and inhibited tyrosinase expression, melanin contents, and microphthalmia-associated transcription factor expression in α-melanocyte-stimulating hormone-stimulated B16BL6 cells. These findings demonstrate that APMFAb has beneficial effects on skin wound healing by promoting the proliferation, migration, and collagen synthesis of keratinocytes and on skin whitening by inhibiting melanin synthesis in melanoma cells. Therefore, we suggest that APMFAb has potential use as a wound healing and skin whitening agent.


Assuntos
Angelica/metabolismo , Extratos Vegetais/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flores/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Melaninas/biossíntese , Melaninas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pele/efeitos dos fármacos , Pele/metabolismo
8.
Environ Sci Technol ; 53(24): 14357-14367, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31640342

RESUMO

During managed aquifer recharge (MAR), injected water significantly alters water chemistry in an aquifer, affecting arsenic mobility. To elucidate the effects of dissolved organic matter (DOM) on arsenic mobilization during MAR, this bench-scale study examined arsenic mobilization from arsenopyrite (FeAsS, an arsenic-containing sulfide) in the presence of Suwannee River natural organic matter, humic acid, and fulvic acid (SRNOM, SRHA, and SRFA), alginate (Alg), polyaspartate (PA), and glutamate (Glu). Suwannee River DOM (SRDOM) decreased arsenic mobility in the short term (<6 h) via inhibiting arsenopyrite oxidative dissolution, but increased arsenic mobility over a longer experimental time (∼7 days) via inhibiting secondary iron(III) (hydr)oxide precipitation and decreasing arsenic adsorption onto iron(III) (hydr)oxide. In situ grazing incidence small-angle X-ray scattering measurements indicated that SRDOM decreased iron(III) (hydr)oxide nucleus sizes and growth rates. A combined analysis of SRDOM and other proteinaceous or labile DOM (Alg, PA, and Glu) revealed that DOM with higher molecular weights would cause more increased arsenic mobility. These new observations advance our understanding of the impacts of DOM in injected water on arsenic mobility and secondary precipitate formation during MAR, and in other systems where interactions between DOM, arsenic, and iron(III) (hydr)oxides take place.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Adsorção , Substâncias Húmicas , Ferro
9.
Chem Biodivers ; 16(8): e1900252, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31250551

RESUMO

Patrinia scabiosifolia (PS) has bioactivities such as antitumor and anti-inflammation effects. However, its effects on human skin physiological activities, such as skin regeneration and wound healing, remain unclear. In this study, we investigated the effects of absolute extracted from PS flower (PSF) on migration and proliferation of human dermal keratinocyte (HaCat). The yield of PSF absolute obtained by solvent extraction method was 0.105 % and its five constituents were found in GC/MS analysis. The PSF absolute induced the proliferation and migration of HaCats. The absolute increased the phosphorylation of serine/threonine-specific protein kinase (Akt) and extracellular signal-regulated kinase1/2 (Erk1/2) in HaCats. In addition, the absolute stimulated the outgrowth of collagen sprouting of HaCats. These results demonstrated, for the first time, that PSF absolute may have positive effects on skin regeneration and/or wound healing by inducing migration and proliferation of dermal keratinocytes via the Akt/Erk1/2 pathway. Therefore, PSF absolute may be a useful natural material for skin regeneration and/or wound healing.


Assuntos
Patrinia/química , Extratos Vegetais/química , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flores/química , Flores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Patrinia/metabolismo , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Pflugers Arch ; 470(12): 1831-1843, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30155775

RESUMO

The multifunctional glucose-regulated protein 78 (GRP78) is known to be differentially expressed in the lipid rafts of vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats (SHRs) and normal Wistar-Kyoto (WKY) rats. However, its role in VSMCs from SHRs remains to be elucidated. This work was conducted to investigate the contribution made by GRP78 in VSMCs. GRP78 expression in VSMC lipid rafts decreased in WKY rats with age, but not in SHRs. Transfection with GRP78-siRNA attenuated not only platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation and aortic sprout outgrowth but also the phosphorylation of PDGF receptor (PDGFR)-ß, Akt, and extracellular signal-regulated kinase (Erk) 1/2 in VSMCs in response to PDGF-BB. Moreover, GRP78 knockdown also reduced the PDGF-BB-induced dimerization of PDGFR-ß and GRP78 in SHR VSMCs. The phosphorylation of GRP78 and PDGFR-ß was elevated in VSMCs treated with PDGF-BB and was completely abolished by AG1296 (a PDGFR inhibitor). Moreover, the binding of PDGFR-ß to GRP78 and the co-localization of GRP78 to PDGFR-ß in VSMCs were stronger in SHRs than in WKY rat controls. This study demonstrates that the PDGF-BB-induced proliferation of SHR VSMCs is mediated by the expressional upregulation of GRP78 on VSMC lipid rafts in SHRs, probably via the regulation of PDGFR-ß-GRP78 binding and their cross-activation. These observations indicate that GRP78 may play important roles in the pathological progression of SHR VSMCs.


Assuntos
Proliferação de Células , Proteínas de Choque Térmico/metabolismo , Hipertensão/metabolismo , Microdomínios da Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Animais , Células Cultivadas , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Músculo Liso Vascular/fisiologia , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Ratos Wistar , Receptores do Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Transdução de Sinais
11.
Environ Sci Technol ; 52(22): 13638-13646, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30346737

RESUMO

Cations in formation brine can affect CO2-induced dissolution of minerals during geologic CO2 sequestration (GCS), affecting the GCS performance. This study investigated the dissolution of biotite with 0-4 M Na+ and 0-10 mM K+ under high temperature and high CO2 pressure (i.e., 95 °C and 100 bar CO2). At <0.5 M Na+ concentration, Na+ replaced K+ in the biotite interlayer and enhanced the biotite dissolution. In >0.5 M Na+, however, the enhancing effect of Na+ was mitigated by an inhibition caused by competing sorption between Na+ and protons. With 0.5 M Na+ concentration, coexisting K+ significantly inhibited the biotite dissolution with high sensitivity at even lower K+ concentrations, such as 0.1-0.5 mM. In this study, we also reported the dissolution of Na-treated biotite, mimicking biotite naturally equilibrated with Na+-abundant brine. Na-treated biotite dissolved faster than natural K-containing biotite, and during the dissolution, it transformed to vermiculite. Aqueous Na+ inhibited the dissolution of Na-treated biotite by suppressing the release of interlayer Na+, and aqueous K+ inhibited the dissolution of Na-treated biotite by replacing the interlayer Na+. These findings contribute to better understanding of biotite dissolution in the presence of potassium-containing clay-swelling inhibitors and different salinities at GCS sites.


Assuntos
Dióxido de Carbono , Compostos Ferrosos , Silicatos de Alumínio , Solubilidade , Temperatura
12.
Environ Sci Technol ; 52(10): 6042-6049, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29668264

RESUMO

To explore the effects of scale inhibitors on subsurface water-mineral interactions, here batch experiments on biotite dissolution (0-96 h) were conducted in solutions containing 0-1.0 mM diethylenetriaminepenta(methylene)phosphonate (DTPMP, a model scale inhibitor), at conditions simulating subsurface environments (95 °C and 102 atm CO2). The phosphonate groups in DTPMP enhanced biotite dissolution through both aqueous and surface complexations with Fe, with more significant effects at a higher DTPMP concentration. Surface complexation made cracked biotite layers bend, and these layers detached at a later stage (≥44 h). The presence of DTPMP also promoted secondary precipitation of Fe- and Al-bearing minerals both in the solution and on the reacted biotite surfaces. With 1.0 mM DTPMP after 44 h, significant coverage of biotite surfaces by precipitates and less detachment of cracked layers blocked reactive sites and inhibited further biotite dissolution. Furthermore, adsorption of DTPMP made the reacted biotite basal surfaces more hydrophilic, which may affect the transport of reactive fluids. This study provides new information on the impacts of phosphonates in brine-mineral interactions, benefiting safer and more environmentally sustainable design and operation of engineered subsurface processes.


Assuntos
Silicatos de Alumínio , Organofosfonatos , Compostos Ferrosos , Sais
13.
Chem Biodivers ; 15(2)2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29292594

RESUMO

In the present study, the chemical compositions and skin whitening-related antioxidant and anti-melanogenic effect of essential oils (EOs) extracted from Chrysanthemum borealeMakino (CBM) (CBMEOs) at vegetative, pre-flowering and full-flowering are investigated and contrasted among the three stages. The yields and components of the CBMEOs were different at each stage. The CBMEOs increased DPPH and ABTs scavenging activities and attenuated the α-melanocyte stimulating hormone (α-MSH)-induced tyrosinase activity and melanin synthesis in B16BL6 cells. Among CBMEO components, eugenol had the highest DPPH and ABTs scavenging activities and cuminaldehyde was the strongest inhibitor of α-MSH-induced tyrosinase activity and melanin synthesis. The CBMEOs in each stage showed the different levels of phosphorylation of extracellular signal-regulated kinase1/2 and p38 MAPK. These findings demonstrate that the CBMEOs have antioxidative and anti-melanogenic activities in all the CBM harvesting stages, resulting in skin-whitening biological activities and that the levels of their component contents and bioactivities differ among the CBM harvesting stages. The CBMEOs may have the potential for use in cosmetics and alternative medicine.


Assuntos
Antioxidantes/farmacologia , Chrysanthemum/química , Melanoma/metabolismo , Óleos Voláteis/farmacologia , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Animais , Antioxidantes/química , Antioxidantes/isolamento & purificação , Relação Dose-Resposta a Droga , Melaninas/antagonistas & inibidores , Melaninas/biossíntese , Camundongos , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Relação Estrutura-Atividade , Células Tumorais Cultivadas
14.
Acc Chem Res ; 49(9): 1681-90, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27513685

RESUMO

Mineral nucleation is a phase transformation of aqueous components to solids with an accompanying creation of new surfaces. In this evolutional, yet elusive, process, nuclei often form at environmental interfaces, which provide remarkably reactive sites for heterogeneous nucleation and growth. Naturally occurring nucleation processes significantly contribute to the biogeochemical cycles of important components in the Earth's crust, such as iron and manganese oxide minerals and calcium carbonate. However, in recent decades, these cycles have been significantly altered by anthropogenic activities, which affect the aqueous chemistry and equilibrium of both surface and subsurface systems. These alterations can trigger the dissolution of existing minerals and formation of new nanoparticles (i.e., nucleation and growth) and consequently change the porosity and permeability of geomedia in subsurface environments. Newly formed nanoparticles can also actively interact with components in natural and engineered aquatic systems, including those posing a significant hazard such as arsenic. These interactions can bilaterally influence the fate and transport of both newly formed nanoparticles and aqueous components. Due to their importance in natural and engineered processes, heterogeneous nucleation at environmental interfaces has started to receive more attention. However, a lack of time-resolved in situ analyses makes the evaluation of heterogeneous nucleation challenging because the physicochemical properties of both the nuclei and surfaces significantly and dynamically change with time and aqueous chemistry. This Account reviews our in situ kinetic studies of the heterogeneous nucleation and growth behaviors of iron(III) (hydr)oxide, calcium carbonate, and manganese (hydr)oxide minerals in aqueous systems. In particular, we utilized simultaneous small-angle and grazing incidence small-angle X-ray scattering (SAXS/GISAXS) to investigate in situ and in real-time the effects of water chemistry and substrate identity on heterogeneously and homogeneously formed nanoscale precipitate size dimensions and total particle volume. Using this technique, we also provided a new platform for quantitatively comparing between heterogeneous and homogeneous nucleation and growth of nanoparticles and obtaining undiscovered interfacial energies between nuclei and surfaces. In addition, nanoscale surface characterization tools, such as in situ atomic force microscopy (AFM), were utilized to support and complement our findings. With these powerful nanoscale tools, we systematically evaluated the influences of environmentally abundant (oxy)anions and cations and the properties of environmental surfaces, such as surface charge and hydrophobicity. The findings, significantly enhanced by in situ observations, can lead to a more accurate prediction of the behaviors of nanoparticles in the environment and enable better control of the physicochemical properties of nanoparticles in engineered systems, such as catalytic reactions and energy storage.


Assuntos
Carbonato de Cálcio/química , Compostos Férricos/química , Compostos de Manganês/química , Minerais/química , Nanopartículas/química , Óxidos/química , Cinética , Termodinâmica
15.
Phys Chem Chem Phys ; 19(44): 29895-29904, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29086792

RESUMO

Brine-mica interfacial interactions affect both the caprock integrity and the fate and transport of reactive fluids at deep subsurface sites. Phosphate naturally exists at low concentration in subsurface brines, and its concentration can be increased significantly during energy-related engineered subsurface processes. However, our understanding of the influence of phosphate on brine-mica interactions is limited, especially under subsurface conditions. Here, biotite dissolution experiments were conducted without and with phosphate (0.1, 1, and 10 mM) at 95 °C and 102 atm CO2. Compared to the control, 0.1 mM, and 1 mM phosphate systems, biotite dissolution was four times higher with 10 mM phosphate. Despite the dissolution differences, in all the phosphate systems, phosphate interacted with Al and Fe sites in biotite, forming surface complexation and precipitating as Fe- or Al-bearing minerals on surfaces and in solutions. Consequently, aqueous Fe and Al concentrations became lower with phosphate than in the control experiments. In addition, the biotite basal surfaces became more hydrophilic after reaction with phosphate, even at 0.1 mM, mainly from phosphate adsorption. This study offers new information on how phosphate-containing brine interacts with caprocks and on the consequent wettability changes, results that can benefit current and future energy-related subsurface engineering processes.

16.
J Vasc Res ; 52(5): 321-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26930561

RESUMO

Synaptosomal-associated protein 23 (SNAP23) is involved in microvesicle trafficking and exocytosis in various cell types, but its functional role in blood pressure (BP) regulation has not yet been defined. Here, we found that lipid raft SNAP23 expression was much lower in vascular smooth-muscle cells (VSMCs) from spontaneously hypertensive rats (SHR) than in those from normotensive Wistar-Kyoto (WKY) rats. This led us to investigate the hypothesis that this lower expression may be linked to the spontaneous hypertension found in SHR. The expression level of lipid raft SNAP23 and the fluidity in the plasma membrane of VSMCs were lower in SHR than in WKY rats. Cholesterol content in the VSMC membrane was higher, but the secreted cholesterols found in VSMC-conditioned medium and in the blood serum were lower in SHR than in WKY rats. SNAP23 knockdown in WKY rat VSMCs reduced the membrane fluidity and increased the membrane cholesterol level. Systemic overexpression of SNAP23 in SHR resulted in an increase of cholesterol content in their serum, a decrease in cholesterol in their aorta and the reduction of their BP. Our findings suggest that the low expression of the lipid raft SNAP23 in VSMCs might be a potential cause for the characteristic hypertension of SHR.


Assuntos
Pressão Sanguínea , Hipertensão/metabolismo , Fluidez de Membrana , Microdomínios da Membrana/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células Cultivadas , Colesterol/sangue , Modelos Animais de Doenças , Regulação para Baixo , Hipertensão/genética , Hipertensão/fisiopatologia , Masculino , Músculo Liso Vascular/fisiopatologia , Interferência de RNA , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/genética
17.
Pharm Biol ; 53(5): 725-34, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25330930

RESUMO

CONTEXT: Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. OBJECTIVE: The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). MATERIALS AND METHODS: CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography-mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01-100 µM and analyzing ex vivo aortic ring assay. RESULTS: Gas chromatography-mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC50: 0.010 µg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-ß phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BB-induced phosphorylation of these kinases (IC50: 008 and 0.018 µg/mL, for p38 MAPK and ERK1/2, respectively), as well as PDGFR-ß (IC50: 0.046 µg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC50: 0.047 µg/mL). DISCUSSION AND CONCLUSION: These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-ß-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.


Assuntos
Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chrysanthemum , Músculo Liso Vascular/efeitos dos fármacos , Extratos Vegetais/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Flores , Masculino , Músculo Liso Vascular/citologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Extratos Vegetais/isolamento & purificação , Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Água/farmacologia
18.
Telemed J E Health ; 20(6): 522-30, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24693921

RESUMO

OBJECTIVE: The purpose of this study was to develop and validate a novel method for sleep quality quantification using personal handheld devices. MATERIALS AND METHODS: The proposed method used 3- or 6-axes signals, including acceleration and angular velocity, obtained from built-in sensors in a smartphone and applied a real-time wavelet denoising technique to minimize the nonstationary noise. Sleep or wake status was decided on each axis, and the totals were finally summed to calculate sleep efficiency (SE), regarded as sleep quality in general. The sleep experiment was carried out for performance evaluation of the proposed method, and 14 subjects participated. An experimental protocol was designed for comparative analysis. The activity during sleep was recorded not only by the proposed method but also by well-known commercial applications simultaneously; moreover, activity was recorded on different mattresses and locations to verify the reliability in practical use. Every calculated SE was compared with the SE of a clinically certified medical device, the Philips (Amsterdam, The Netherlands) Actiwatch. RESULTS: In these experiments, the proposed method proved its reliability in quantifying sleep quality. Compared with the Actiwatch, accuracy and average bias error of SE calculated by the proposed method were 96.50% and -1.91%, respectively. CONCLUSIONS: The proposed method was vastly superior to other comparative applications with at least 11.41% in average accuracy and at least 6.10% in average bias; average accuracy and average absolute bias error of comparative applications were 76.33% and 17.52%, respectively.


Assuntos
Computadores de Mão/estatística & dados numéricos , Monitorização Fisiológica/instrumentação , Polissonografia/instrumentação , Sono/fisiologia , Adulto , Estudos de Avaliação como Assunto , Feminino , Humanos , Masculino , Países Baixos , Reprodutibilidade dos Testes , Estudos de Amostragem , Sensibilidade e Especificidade , Fases do Sono/fisiologia
19.
Bioengineering (Basel) ; 11(6)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38927767

RESUMO

Heart failure is associated with a significant mortality rate, and an elevated prevalence of this condition has been noted among hypertensive patients. The identification of predictive factors for heart failure progression in hypertensive individuals is crucial for early intervention and improved patient outcomes. In this study, we aimed to identify these predictive factors by utilizing medical diagnosis records for hypertension patients from the MIMIC-IV database. In particular, we employed only diagnostic history prior to hypertension to enable patients to anticipate the onset of heart failure at the moment of hypertension diagnosis. In the methodology, chi-square tests and XGBoost modeling were applied to examine age-specific predictive factors across four groups: AL (all ages), G1 (0 to 65 years), G2 (65 to 80 years), and G3 (over 80 years). As a result, the chi-square tests identified 34, 28, 20, and 10 predictive factors for the AL, G1, G2, and G3 groups, respectively. Meanwhile, the XGBoost modeling uncovered 19, 21, 27, and 33 predictive factors for these respective groups. Ultimately, our findings reveal 21 overall predictive factors, encompassing conditions such as atrial fibrillation, the use of anticoagulants, kidney failure, obstructive pulmonary disease, and anemia. These factors were assessed through a comprehensive review of the existing literature. We anticipate that the results will offer valuable insights for the risk assessment of heart failure in hypertensive patients.

20.
Commun Biol ; 7(1): 401, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565627

RESUMO

Cave crickets (Rhaphidophoridae) are insects of an ancient and wingless lineage within Orthoptera that are distributed worldwide except in Antarctica, and each subfamily has a high level of endemicity. Here, we show the comprehensive phylogeny of cave crickets using multi-gene datasets from mitochondrial and nuclear loci, including all extant subfamilies for the first time. We reveal phylogenetic relationships between subfamilies, including the sister relationship between Anoplophilinae and Gammarotettiginae, based on which we suggest new synapomorphies. Through biogeographic analyses based on divergence time estimations and ancestral range reconstruction, we propose novel hypotheses regarding the biogeographic history of cave crickets. We suggest that Gammarotettiginae in California originated from the Asian lineage when Asia and the Americas were connected by the Bering land bridge, and the opening of the western interior seaway affected the division of Ceuthophilinae from Tropidischiinae in North America. We estimate that Rhaphidophoridae originated at 138 Mya throughout Pangea. We further hypothesize that the loss of wings in Rhaphidophoridae could be the result of their adaptation to low temperatures in the Mesozoic era.


Assuntos
Ortópteros , Animais , Filogenia , Ásia , América do Norte , Regiões Antárticas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa