Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; : e2404223, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082408

RESUMO

This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.

2.
Blood ; 138(21): 2117-2128, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34115847

RESUMO

Shwachman-Diamond syndrome (SDS; OMIM #260400) is caused by variants in SBDS (Shwachman-Bodian-Diamond syndrome gene), which encodes a protein that plays an important role in ribosome assembly. Recent reports suggest that recessive variants in EFL1 are also responsible for SDS. However, the precise genetic mechanism that leads to EFL1-induced SDS remains incompletely understood. Here we present 3 unrelated Korean SDS patients who carry biallelic pathogenic variants in EFL1 with biased allele frequencies, resulting from a bone marrow-specific somatic uniparental disomy in chromosome 15. The recombination events generated cells that were homozygous for the relatively milder variant, allowing for the evasion of catastrophic physiologic consequences. However, the milder EFL1 variant was still solely able to impair 80S ribosome assembly and induce SDS features in cell line and animal models. The loss of EFL1 resulted in a pronounced inhibition of terminal oligopyrimidine element-containing ribosomal protein transcript 80S assembly. Therefore, we propose a more accurate pathogenesis mechanism of EFL1 dysfunction that eventually leads to aberrant translational control and ribosomopathy.


Assuntos
Fatores de Alongamento de Peptídeos/genética , Ribonucleoproteína Nuclear Pequena U5/genética , Síndrome de Shwachman-Diamond/genética , Dissomia Uniparental/genética , Adulto , Alelos , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutação Puntual
3.
J Cell Physiol ; 237(7): 2943-2960, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35491694

RESUMO

Growing evidence indicates that long intergenic noncoding RNAs play an important role in cancer progression by affecting gene regulation at the transcriptional and posttranscriptional levels. Recent studies have shown that long intergenic noncoding RNA functions as a competitive endogenous RNA, which can interact with and mitigate the function of microRNA. In this study, we investigated the molecular mechanism by which LINC00162 regulates cell proliferation and apoptotic cell death. By analyzing RNA sequencing data, LINC00162 was identified to be a target of heterogeneous nuclear ribonucleoprotein K (hnRNPK). HnRNPK positively regulated LINC00162 expression through p38 mitogen-activated protein kinase. Lowering the level of either hnRNPK or LINC00162 decreased proliferation and colony formation while it increased apoptotic cell death. Small RNA sequencing followed by the antisense oligonucleotide pulldown, revealed that LINC00162 interacts directly with miR-485-5p which exhibited tumor-suppressing effects by suppressing cell proliferation and colony formation, and increasing apoptotic cell death. Through the bioinformatic approaches, progestin and adipoQ receptor 4 (PAQR4) was selected as a common target of LINC00162 and miR-485-5p. miR-485-5p decreased the expression of PAQR4 by directly binding to the 3'-untranslated region of PAQR4 messenger RNA. Knockdown of hnRNPK and LINC00162 increased the level of functional miR-485-5p, indicating that LINC00162 may compete for miR-485-5p, thereby derepressing PAQR4 expression. Overexpression of either hnRNPK or LINC00162, or inhibition of miR-485-5p, protected cells against etoposide-induced apoptotic death. Our findings demonstrate that a regulatory paradigm implicating hnRNPK, LINC00162, miR-485-5p, and PAQR4 plays an important role in cell proliferation and apoptosis, and is a promising target for cancer therapeutics.


Assuntos
Proliferação de Células , MicroRNAs , Neoplasias , RNA Longo não Codificante , Regiões 3' não Traduzidas/genética , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Receptores de Progesterona/metabolismo
4.
Mol Cancer ; 21(1): 197, 2022 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224588

RESUMO

BACKGROUND: Circular RNAs (circRNAs) play a critical role in colorectal cancer (CRC) progression, including metastasis. However, the detailed molecular mechanism is not fully understood. METHODS: Differentially expressed circRNAs between primary KM12C and liver metastatic KM12L4 colon cancer cells were identified by microarray. The expression of circRNAs was measured by semi-quantitative (semi-qPCR) and real time-quantitative PCR (RT-qPCR). Metastatic potential including invasive and migratory abilities, and liver metastasis were examined by transwell assays and intrasplenic injection, respectively. CircPPFIA1-associated microRNA (miRNA) and RNA-binding protein (RBP) were screened by an antisense oligonucleotide (ASO) pulldown experiment. The effects of circPPFIA1 on target gene expression were evaluated by RT-qPCR and western blot analyses. RESULTS: By analyzing circRNA microarray data, we identified two anti-metastatic circRNAs generated from PPFIA1 with different length, which named circPPFIA1-L (long) and -S (short). They were significantly downregulated in liver metastatic KM12L4 cells compared to primary KM12C cells. The knockdown of circPPFIA1s in KM12C enhanced metastatic potential and increased liver metastasis. Conversely, overexpression of circPPFIA1s weakened metastatic potential and inhibited liver metastasis. circPPFIA1s were found to function as sponges of oncogenic miR-155-5p and Hu antigen R (HuR) by an ASO pulldown experiment. circPPFIA1s upregulated tumor-suppressing CDX1 expression and conversely downregulated oncogenic RAB36 by decoying miR-155-5p and by sequestering HuR, respectively. CONCLUSION: Our findings demonstrate that circPPFIA1s inhibit the liver metastasis of CRC via the miR-155-5p/CDX1 and HuR/RAB36 pathways.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Neoplasias Colorretais/genética , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Neoplasias Hepáticas/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso , RNA Circular/genética , Proteínas rab de Ligação ao GTP/metabolismo
5.
Small ; 18(48): e2205001, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36310131

RESUMO

The parallelization of multiple microfluidic droplet junctions has been successfully achieved so that the production throughput of the uniform microemulsions/particles has witnessed considerable progress. However, these advancements have been observed only in the case of a low viscous fluid (viscosity of 10-2 -10-3 Pa s). This study designs and fabricates a microfluidic device, enabling a uniform micro-emulsification of an ultraviscous fluid (viscosity of 3.5 Pa s) with a throughput of ≈330 000 droplets per hour. Multiple T-junctions of a dispersed oil phase, split from a single inlet, are connected into the single post-crossflow channel of a continuous water phase. In the proposed device, the continuous water phase undergoes a series circuit, wherein the resistances are continuously accumulated. The independent corrugations of the dispersed oil phase channel, under the theoretical guidance, compromise such increased resistances; the ratio of water to oil flow rates at each junction becomes consistent across T-junctions. Owing to the design being based on a fully 2D interconnection, single-step soft lithography is sufficient for developing the full device. This easy-to-craft architecture contrasts with the previous approach, wherein complicated 3D interconnections of the multiple junctions are involved, thereby facilitating the rapid uptake of high throughput droplet microfluidics for experts and newcomers alike.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Dispositivos Lab-On-A-Chip , Emulsões , Água
6.
Br J Cancer ; 123(7): 1123-1130, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32546833

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT) is the most common cause of death in colorectal cancer (CRC). In this study, we investigated the functional roles of miRNA-17-5p in EMT of CRC cells. METHODS: In order to determine if miRNA-17-5p regulated EMT, the precursors and inhibitors of miR-17-5p were transduced into four CRC cells. To evaluate the regulatory mechanism, we performed argonaute 2 (Ago2) immunoprecipitation (IP) and luciferase assay. In addition, we used an intra-splenic injection mouse model of BALB/c nude mice to investigate the metastatic potential of miRNA-17-5p in vivo. RESULTS: The miRNA-17-5p expression was lower in primary CRC tissues with metastasis than in primary CRC tissues without metastasis in our RNA sequencing data of patient tissue. Real-time quantitative PCR revealed that miRNA-17-5p was inversely correlated with that of vimentin in five CRC cell lines. Over-expression of miRNA-17-5p decreased vimentin expression and inhibited cell migration and invasion in both LoVo and HT29 cells. However, inhibition of miRNA-17-5p showed the opposite effect. Ago2 IP and luciferase assay revealed that miRNA-17-5p directly bound to the 3'UTR of VIM mRNA. Furthermore, miRNA-17-5p inhibited the metastasis of CRC into liver in vivo. CONCLUSIONS: Our results demonstrated that miRNA-17-5p regulates vimentin expression, thereby regulating metastasis of CRC.


Assuntos
Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , MicroRNAs/fisiologia , Vimentina/genética , Animais , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Metástase Neoplásica
7.
Br J Cancer ; 123(7): 1204, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32820222

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Langmuir ; 36(23): 6589-6596, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32370514

RESUMO

Radiative cooling has proven to be a powerful strategy for sustainable thermal management. Nanophotonic structures enabling broadband reflection lead to minimization of sunlight absorption, which has brought nighttime-limited radiative cooling into daytime applications. However, this broadband reflection strategy in turn restricts the accessible colorization of radiative coolers to white or neutral, consequently hindering their practical applications, particularly for aesthetic purposes. With a few exceptions, selective absorption at a specific visible wavelength has been the most prevalent paradigm for colorization of radiative coolers. However, this absorption-based colorization inevitably makes the radiative cooler prone to heating, thus decreasing the cooling efficiency. Here, we demonstrate an undiscovered usage of opals for advancing color-preserved daytime radiative coolers. Opals, which have served mainly as Bragg reflective color pigments thus far, can be considered an effective homogeneous medium in the mid-infrared region. Thus, opals can also be envisioned as reflectively colorful metamaterials capable of radiative cooling even under the direct summer sun. Together with the soft fluidity of colloidal suspensions, opals can serve as platforms for easy-to-craft, large-scale, and colorful radiative coolers with minimal solar absorption.

9.
Exp Cell Res ; 358(2): 161-170, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28624413

RESUMO

Although SRSF3 (Serine/arginine-rich splicing factor 3) plays a significant role in various biological processes, many of its functions still remain unclear. More particularly, little is known about SRSF3's involvement in the regulation of miRNA. In this report, we found that invasive and migratory abilities were inhibited in SRSF3-silenced U2OS and HeLa cells. We also found that a knockdown of SRSF3 results in a decreased expression level of REST (RE1-silencing transcription factor). The silencing of REST increased the expression of primary miR-132/212 as well as their mature forms. In particular, miR-132-3p and miR-212-3p possess an identical seed sequences and a common target gene. Overexpression of miR-132-3p and miR-212-3p suppressed the expression of YAP1 (Yes-associated protein 1) by directly binding to the 3՚UTR of its mRNA. CCND1 (Cyclin D1), which acts downstream of YAP1, was downregulated in both miR-132-3p and miR-212-3p-overexpressed cells, in correlation with diminished YAP1 levels. Taken together, our results reveal that SRSF3 controls the expression of the miR-132/212 cluster through regulating REST expression, and that the REST-elicited alteration of miRNA expression is implicated in enabling the migratory and invasive abilities of cancer cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Fosfoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Ciclina D1/genética , Regulação para Baixo , Humanos , Fosfoproteínas/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição , Proteínas de Sinalização YAP
10.
Biochim Biophys Acta ; 1859(4): 599-611, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26923924

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive type of primary brain tumor derived from non-neuronal glial cells. Neurofibromatosis 2 (NF2) protein, also termed as merlin, is a well-known tumor suppressor; however, the molecular mechanism underlying this effect has not yet been fully defined. To investigate the role of NF2 in the invasiveness of GBM, we used two GBM cell lines: NF2-expressing T98G cells and NF2-deficient A172 cells. Knockdown of NF2 increased the invasiveness of T98G cells, whereas NF2-overexpressing A172 cells showed decreased invasive activity. Moreover, re-expression of NF2 reversed the high invasiveness of NF2-silenced T98G cells, indicating that NF2 negatively regulates GBM invasiveness. We further found that the NF2-mediated regulation of invasiveness was dependent on YAP and TEAD2 expression levels. NF2 also controlled the expression of YAP targets, including cysteine-rich angiogenic inducer 61 (CYR61/CCN1), by regulating the nuclear localization of YAP. Silencing of CYR61/CCN1 blocked the increased invasiveness of T98G cells, suggesting that CYR61/CCN1 is required for NF2-mediated invasiveness. Through microRNA microarray analysis, we found that NF2 negatively regulates the expression of miR-296-3p. Overexpression of miR-296-3p suppressed the expression of STAT5A, induced the phosphorylation of STAT3 by downregulating SOCS2, and increased the invasiveness of T98G cells. Taken together, we demonstrate that NF2 negatively controls the invasiveness of GBM through YAP-dependent induction of CYR61/CCN1 and miR-296-3p.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Rica em Cisteína 61/genética , Glioblastoma/genética , MicroRNAs/genética , Neurofibromina 2/genética , Fosfoproteínas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteína Rica em Cisteína 61/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Humanos , MicroRNAs/biossíntese , Invasividade Neoplásica/genética , Fatores de Transcrição , Proteínas de Sinalização YAP
11.
Brain ; 139(Pt 10): 2722-2739, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27538419

RESUMO

The original properties of tissue-specific stem cells, regardless of their tissue origins, are inevitably altered during in vitro culturing, lessening the clinical and research utility of stem cell cultures. Specifically, neural stem cells derived from the ventral midbrain lose their dopamine neurogenic potential, ventral midbrain-specific phenotypes, and repair capacity during in vitro cell expansion, all of which are critical concerns in using the cultured neural stem cells in therapeutic approaches for Parkinson's disease. In this study, we observed that the culture-dependent changes of neural stem cells derived from the ventral midbrain coincided with loss of RNA-binding protein LIN28A expression. When LIN28A expression was forced and sustained during neural stem cell expansion using an inducible expression-vector system, loss of dopamine neurogenic potential and midbrain phenotypes after long-term culturing was blocked. Furthermore, dopamine neurons that differentiated from neural stem cells exhibited remarkable survival and resistance against toxic insults. The observed effects were not due to a direct action of LIN28A on the differentiated dopamine neurons, but rather its action on precursor neural stem cells as exogene expression was switched off in the differentiating/differentiated cultures. Remarkable and reproducible behavioural recovery was shown in all Parkinson's disease rats grafted with neural stem cells expanded with LIN28A expression, along with extensive engraftment of dopamine neurons expressing mature neuronal and midbrain-specific markers. These findings suggest that LIN28A expression during stem cell expansion could be used to prepare therapeutically competent donor cells.

12.
Genes Dev ; 23(15): 1743-8, 2009 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-19574298

RESUMO

RNA-binding proteins (RBPs) and microRNAs (miRNAs) are potent post-transcriptional regulators of gene expression. Here, we show that the RBP HuR reduced c-Myc expression by associating with the c-Myc 3' untranslated region (UTR) next to a miRNA let-7-binding site. Lowering HuR or let-7 levels relieved the translational repression of c-Myc. Unexpectedly, HuR and let-7 repressed c-Myc through an interdependent mechanism, as let-7 required HuR to reduce c-Myc expression and HuR required let-7 to inhibit c-Myc expression. Our findings suggest a regulatory paradigm wherein HuR inhibits c-Myc expression by recruiting let-7-loaded RISC (RNA miRNA-induced silencing complex) to the c-Myc 3'UTR.


Assuntos
Antígenos de Superfície/metabolismo , Regulação da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Regiões 3' não Traduzidas , Proteínas Argonautas , Sequência de Bases , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Fator de Iniciação 2 em Eucariotos/metabolismo , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-myc/genética , RNA Mensageiro/metabolismo
13.
Sensors (Basel) ; 16(3): 277, 2016 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-26927098

RESUMO

We propose a novel non-contact optical fiber displacement sensor. It uses a radio frequency (RF) interrogation technique which is based on bidirectional modulation of a Mach-Zehnder electro-optical modulator (MZ-EOM). The displacement is measured from the free spectral range (FSR) which is determined by the dip frequencies of the modulated MZ-EOM transfer function. In experiments, the proposed sensor showed a sensitivity of 456 kHz/mm or 1.043 kHz/V in a measurement range of 7 mm. The displacement resolution of the proposed sensor depends on the linewidth and the power of the optical source. Resolution better than 0.05 µm would be achieved if an optical source which has a linewidth narrower than 1.5 nm and a received power larger than -36 dBm is used. Also, the multiplexing characteristic of the proposed sensor was experimentally validated.

14.
Biochim Biophys Acta ; 1839(9): 826-36, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24999035

RESUMO

Ischemic cerebral stroke is one of the leading global causes of mortality and morbidity. Ischemic preconditioning (IPC) refers to a sublethal ischemia and resulting in tolerance to subsequent severe ischemic injury. Although several pathways are reportedly involved in IPC-mediated neuroprotection, the functional role of astrocytes is not fully understood. Stromal cell-derived factor-1 (SDF-1), a CXC chemokine produced mainly in astrocytes, is a ligand for chemokine receptor CXCR4. SDF-1 is reported to play a critical role in neuroprotection after stroke by mediating the migration of neuronal progenitor cells. We hypothesized that stimuli derived from ischemic brain were involved in the protective effects of IPC. To investigate this hypothesis, the mechanism in which ischemic brain extract (IBE) induced SDF-1 expression was investigated in C6 astrocytoma cells. IBE treatment of C6 cells increased SDF-1 expression compared to that in untreated or normal brain extract (NBE)-treated cells by downregulating SDF-1 targeting miRNA, miR-27b. MiR-223 was inversely upregulated in IBE-treated cells; overexpression of miR-223 decreased the expression of miR-27b by suppressing IKKα expression. Analysis of cytokine array data revealed an IBE associated enhanced expression of CINC-1 (CXCL1) and LIX1 (CXCL5). Knockdown or inhibition of their receptor, CXCR2, abolished IBE-mediated increased expression of SDF-1. These results were confirmed in primary cultured astrocytes. Taken together, the data demonstrate that IBE-elicited signals increase SDF-1 expression through the CXCR2/miR-223/miR-27b pathway in C6 astrocytoma cells and primary astrocytes, supporting the view that increased expression of SDF-1 by ischemic insults is a possible mechanism underlying therapeutic application of IPC.


Assuntos
Astrócitos/metabolismo , Quimiocina CXCL12/genética , Precondicionamento Isquêmico , MicroRNAs/fisiologia , Receptores de Interleucina-8B/fisiologia , Animais , Células Cultivadas , Quinase I-kappa B/genética , Camundongos , Ratos
15.
Int J Cancer ; 136(2): 310-21, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24895167

RESUMO

CD10 expression was identified as a contributor to cancer progression in several cancers; however, the exact biological significance and mechanism of CD10 expression remains unclear. In addition, CD10 expression in esophageal squamous cell carcinoma (ESCC) has not been studied. We investigated the relationship between CD10 and Twist1. Furthermore, we examined the effect of CD10 on tumorigenicity using in vivo and in vitro systems as well as establishing the clinical significance of CD10 expression in ESCC using large clinical samples. CD10 expression was upregulated by Twist1 and there was a strong correlation between mRNA and protein expression. Twist1 can specifically upregulate CD10 at the transcriptional level via an interaction with the promoter region of CD10 and the proximal E-box CAGGTG in the CD10 promoter was identified as a binding site for Twist1. CD10 is frequently expressed in ESCC cell lines and silencing CD10 suppresses migration/invasion and anchorage-independent tumor growth of ESCC cells. Knockdown of CD10 inhibits the growth of ESCC xenograft in nude mice, suggesting that CD10 plays a role in enhancing the tumorigenesis of ESCC. From among 153 ESCC samples, 46 (30.0%) showed varying degrees of CD10 expression in cancer cells. In addition, stromal fibroblasts also showed varying amounts of CD10 expression in 92 (60.9%) tumor samples. CD10 overexpression in cancer cells as well as in stromal fibroblasts was an independent poor prognostic factor in both overall survival and disease-free survival. CD10 could be a promising target for the treatment of ESCC.


Assuntos
Carcinoma de Células Escamosas/patologia , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/patologia , Neprilisina/metabolismo , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Idoso , Animais , Apoptose , Western Blotting , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Adesão Celular , Imunoprecipitação da Cromatina , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/mortalidade , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Citometria de Fluxo , Humanos , Técnicas Imunoenzimáticas , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutagênese Sítio-Dirigida , Estadiamento de Neoplasias , Neprilisina/genética , Proteínas Nucleares/genética , Prognóstico , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo , Células Estromais/patologia , Taxa de Sobrevida , Células Tumorais Cultivadas , Proteína 1 Relacionada a Twist/genética , Ensaios Antitumorais Modelo de Xenoenxerto
16.
EMBO J ; 30(6): 1040-53, 2011 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-21317874

RESUMO

Ionizing radiation (IR) triggers adaptive changes in gene expression. Here, we show that survival after IR strongly depends on the checkpoint kinase Chk2 acting upon its substrate HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. Microarray analysis showed that in human HCT116 colorectal carcinoma cells (WT), IR-activated Chk2 triggered the dissociation of virtually all of HuR-bound mRNAs, since IR did not dissociate HuR target mRNAs in Chk2-null (CHK2-/-) HCT116 cells. Accordingly, several HuR-interacting mRNAs encoding apoptosis- and proliferation-related proteins (TJP1, Mdm2, TP53BP2, Bax, K-Ras) dissociated from HuR in WT cells, but remained bound and showed altered post-transcriptional regulation in CHK2-/- cells. Use of HuR mutants that were not phosphorylatable by Chk2 (HuR(3A)) and HuR mutants mimicking constitutive phosphorylation by Chk2 (HuR(3D)) revealed that dissociation of HuR target transcripts enhanced cell survival. We propose that the release of HuR-bound mRNAs via an IR-Chk2-HuR regulatory axis improves cell outcome following IR.


Assuntos
Antígenos de Superfície/metabolismo , Células Epiteliais/efeitos da radiação , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Radiação Ionizante , Antígenos de Superfície/genética , Linhagem Celular , Sobrevivência Celular , Quinase do Ponto de Checagem 2 , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Técnicas de Inativação de Genes , Humanos , Proteínas de Ligação a RNA/genética
17.
Biochem Biophys Res Commun ; 444(4): 581-7, 2014 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-24491559

RESUMO

Human mesenchymal stem cells (hMSCs) are known to have the capacity to differentiate into various cell types, including neurons. To examine our hypothesis that miRNA was involved in neuronal differentiation of hMSCs, CoCl2, a hypoxia-mimicking agent was used to induce neuronal differentiation, which was assessed by determining the expression of neuronal markers such as nestin and Tuj1. Treatment of hMSCs with CoCl2 led to increased expression of miR-124a, a neuron-specific miRNA. HIF-1α silencing and JNK inhibition abolished CoCl2-induced miR-124a expression, suggesting that JNK and HIF-1α signals were required for the miR-124a expression induced by CoCl2 in hMSCs. Overexpression of miR-124a or CoCl2 treatment suppressed the expression of anti-neural proteins such as SCP1 and SOX9. Silencing of both SCP1 and SOX9 induced neuronal differentiation of hMSCs, indicating that suppression of miR-124a targets is important for CoCl2-induced neuronal differentiation of hMSCs. Knockdown of HIF-1α or inhibition of JNK restored the expression of SCP1 and SOX9 in CoCl2-treated cells. Inhibition of miR-124a blocked CoCl2-induced suppression of SCP1 and SOX9 and abolished CoCl2-induced neuronal differentiation of hMSCs. Taken together, we demonstrate that miR-124a is critically regulates CoCl2-induced neuronal differentiation of hMSCs by suppressing the expression of SCP1 and SOX9.


Assuntos
Cobalto/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/genética , Neurogênese/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Neurônios/citologia , Fatores de Transcrição SOX9/genética
18.
Adv Mater ; 36(23): e2312748, 2024 Jun.
Artigo em Catalão | MEDLINE | ID: mdl-38450572

RESUMO

A general guiding principle for colloidal crystallization is to tame the attractive enthalpy such that it slightly overwhelms the repulsive interaction. As-synthesized colloids are generally designed to retain a strong repulsive potential for the high stability of suspensions, encoding appropriate attractive potentials into colloids has been key to their crystallization. Despite the myriad of interparticle attractions for colloidal crystallization, the van der Waals (vdW) force remains unexplored. Here, it is shown that the implementation of gold cores into silica colloids and the resulting vdW force can reconfigure the pair potential well depth to the optimal range between -1 and -4 kBT at tens of nanometer-scale colloidal distances. As such, colloidal crystals with a distinct liquid gap can be formed, which is evidenced by photonic bandgap-based diffractive colorization.

19.
Exp Mol Med ; 56(2): 344-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297160

RESUMO

UPF1, a novel posttranscriptional regulator, regulates the abundance of transcripts, including long noncoding RNAs (lncRNAs), and thus plays an important role in cell homeostasis. In this study, we revealed that UPF1 regulates the abundance of hepatocellular carcinoma upregulated EZH2-associated lncRNA (lncRNA-HEIH) by binding the CG-rich motif, thereby regulating hepatocellular carcinoma (HCC) tumorigenesis. UPF1-bound lncRNA-HEIH was susceptible to degradation mediated by UPF1 phosphorylation via SMG1 and SMG5. According to analysis of RNA-seq and public data on patients with liver cancer, the expression of lncRNA-HEIH increased the levels of miR-194-5p targets and was inversely correlated with miR-194-5p expression in HCC patients. Furthermore, UPF1 depletion upregulated lncRNA-HEIH, which acts as a decoy of miR-194-5p that targets GNA13, thereby promoting GNA13 expression and HCC proliferation. The UPF1/lncRNA-HEIH/miR-194-5p/GNA13 regulatory axis is suggested to play a crucial role in cell progression and may be a suitable target for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/genética , RNA Helicases/genética , RNA Longo não Codificante/genética , Transativadores/genética
20.
EMBO J ; 28(9): 1271-82, 2009 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-19322201

RESUMO

The RNA-binding protein HuR regulates the stability and translation of numerous mRNAs encoding stress-response and proliferative proteins. Although its post-transcriptional influence has been linked primarily to its cytoplasmic translocation, here we report that moderate heat shock (HS) potently reduces HuR levels, thereby altering the expression of HuR target mRNAs. HS did not change HuR mRNA levels or de novo translation, but instead reduced HuR protein stability. Supporting the involvement of the ubiquitin-proteasome system in this process were results showing that (1) HuR was ubiquitinated in vitro and in intact cells, (2) proteasome inhibition increased HuR abundance after HS, and (3) the HuR kinase checkpoint kinase 2 protected against the loss of HuR by HS. Within a central, HS-labile approximately 110-amino-acid region, K182 was found to be essential for HuR ubiquitination and proteolysis as mutant HuR(K182R) was left virtually unubiquitinated and was refractory to HS-triggered degradation. Our findings reveal that HS transiently lowers HuR by proteolysis linked to K182 ubiquitination and that HuR reduction enhances cell survival following HS.


Assuntos
Antígenos de Superfície/genética , Antígenos de Superfície/metabolismo , Temperatura Alta , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ubiquitina/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Quinase do Ponto de Checagem 2 , Dactinomicina/farmacologia , Proteínas ELAV , Proteína Semelhante a ELAV 1 , Regulação da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Peróxido de Hidrogênio/farmacologia , Lisina/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estabilidade Proteica , Ubiquitina/química , Ubiquitinação/genética , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa