Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Development ; 148(13)2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34027990

RESUMO

Polycomb repressive complex 2 (PRC2) deposits H3K27me3 on chromatin to silence transcription. PRC2 broadly interacts with RNAs. Currently, the role of the RNA-PRC2 interaction in human cardiogenesis remains elusive. Here, we found that human-specific heart brake lncRNA 1 (HBL1) interacted with two PRC2 subunits, JARID2 and EED, in human pluripotent stem cells (hPSCs). Loss of JARID2, EED or HBL1 significantly enhanced cardiac differentiation from hPSCs. HBL1 depletion disrupted genome-wide PRC2 occupancy and H3K27me3 chromatin modification on essential cardiogenic genes, and broadly enhanced cardiogenic gene transcription in undifferentiated hPSCs and later-on differentiation. In addition, ChIP-seq revealed reduced EED occupancy on 62 overlapped cardiogenic genes in HBL1-/- and JARID2-/- hPSCs, indicating that the epigenetic state of cardiogenic genes was determined by HBL1 and JARID2 at pluripotency stage. Furthermore, after cardiac development occurs, the cytosolic and nuclear fractions of HBL1 could crosstalk via a conserved 'microRNA-1-JARID2' axis to modulate cardiogenic gene transcription. Overall, our findings delineate the indispensable role of HBL1 in guiding PRC2 function during early human cardiogenesis, and expand the mechanistic scope of lncRNA(s) that cytosolic and nuclear portions of HBL1 could coordinate to orchestrate human cardiogenesis.


Assuntos
Genoma , Organogênese , Células-Tronco Pluripotentes/metabolismo , Complexo Repressor Polycomb 2/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular , Cromatina , Células-Tronco Embrionárias/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Coração/crescimento & desenvolvimento , Histonas/genética , Humanos , MicroRNAs
2.
Stem Cells ; 41(10): 958-970, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37539750

RESUMO

The reparative potential of cardiac Lin-KIT+ (KIT) cells is influenced by their population, but identifying their markers is challenging due to changes in phenotype during in vitro culture. Resolving this issue requires uncovering cell heterogeneity and discovering new subpopulations. Single-cell RNA sequencing (scRNA-seq) can identify KIT cell subpopulations, their markers, and signaling pathways. We used 10× genomic scRNA-seq to analyze cardiac-derived cells from adult mice and found 3 primary KIT cell populations: KIT1, characterized by high-KIT expression (KITHI), represents a population of cardiac endothelial cells; KIT2, which has low-KIT expression (KITLO), expresses transcription factors such as KLF4, MYC, and GATA6, as well as genes involved in the regulation of angiogenic cytokines; KIT3, with moderate KIT expression (KITMOD), expresses the cardiac transcription factor MEF2C and mesenchymal cell markers such as ENG. Cell-cell communication network analysis predicted the presence of the 3 KIT clusters as signal senders and receivers, including VEGF, CXCL, and BMP signaling. Metabolic analysis showed that KIT1 has the low activity of glycolysis and oxidative phosphorylation (OXPHOS), KIT2 has high glycolytic activity, and KIT3 has high OXPHOS and fatty acid degradation activity, indicating distinct metabolic adaptations of the 3 KIT populations. Through the systemic infusion of KIT1 cells in a mouse model of myocardial infarction, we observed their involvement in promoting the formation of new micro-vessels. In addition, in vitro spheroid culture experiments demonstrated the cardiac differentiation capacity of KIT2 cells.


Assuntos
Células Endoteliais , Análise da Expressão Gênica de Célula Única , Camundongos , Animais , Células Endoteliais/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Coração , Fatores de Transcrição/metabolismo
3.
Adv Exp Med Biol ; 1418: 119-126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37603276

RESUMO

Skeletal muscle atrophy is a progressive chronic disease associated with various conditions, such as aging, cancer, and muscular dystrophy. Interleukin-6 (IL-6) is highly correlated with or plays a crucial role in inducing skeletal muscle atrophy. Extracellular vehicles (EVs), including exosomes, mediate cell-cell communication, and alterations in the genetic material contained in EVs during muscle atrophy may impair muscle cell signaling. Transplantation of muscle progenitor cell-derived EVs (MPC-EVs) is a promising approach for treating muscle diseases such as Duchenne muscular dystrophy (DMD). Moreover, stem cell-derived EVs with modification of microRNAs (e.g., miR-26 and miR-29) have been reported to attenuate muscle atrophy. Unbiased RNA-Seq analysis suggests that MPC-EVs may exert an inhibitory effect on IL-6 pathway. Here, we review the latest advances concerning the mechanisms of stem cell/progenitor cell-derived EVs in alleviating muscle atrophy, including anti-inflammatory and anti-fibrotic effects. We also discuss the clinical application of EVs in the treatment of muscle atrophy.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Interleucina-6 , Atrofia Muscular/terapia
4.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569835

RESUMO

The gene dystrophin is responsible for Duchenne muscular dystrophy (DMD), a grave X-linked recessive ailment that results in respiratory and cardiac failure. As the expression of dystrophin in muscle stem cells (MuSCs) is a topic of debate, there exists a limited understanding of its influence on the gene network of MuSCs. This study was conducted with the objective of investigating the effects of dystrophin on the regulatory network of genes in MuSCs. To comprehend the function of dystrophin in MuSCs from DMD, this investigation employed single-nuclei RNA sequencing (snRNA-seq) to appraise the transcriptomic profile of MuSCs obtained from the skeletal muscles of dystrophin mutant mice (DMDmut) and wild-type control mice. The study revealed that the dystrophin mutation caused the disruption of several long non-coding RNAs (lncRNAs), leading to the inhibition of MEG3 and NEAT1 and the upregulation of GM48099, GM19951, and GM15564. The Gene Ontology (GO) enrichment analysis of biological processes (BP) indicated that the dystrophin mutation activated the cell adhesion pathway in MuSCs, inhibited the circulatory system process, and affected the regulation of binding. The study also revealed that the metabolic pathway activity of MuSCs was altered. The metabolic activities of oxidative phosphorylation (OXPHOS) and glycolysis were elevated in MuSCs from DMDmut. In summary, this research offers novel insights into the disrupted gene regulatory program in MuSCs due to dystrophin mutation at the single-cell level.


Assuntos
Distrofia Muscular de Duchenne , Células Satélites de Músculo Esquelético , Camundongos , Animais , Distrofia Muscular de Duchenne/metabolismo , Distrofina/genética , Distrofina/metabolismo , Redes Reguladoras de Genes , Músculo Esquelético/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Análise de Sequência de RNA , Modelos Animais de Doenças
5.
Proc Natl Acad Sci U S A ; 115(17): E4101-E4110, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632206

RESUMO

During development, ventricular chamber maturation is a crucial step in the formation of a functionally competent postnatal heart. Defects in this process can lead to left ventricular noncompaction cardiomyopathy and heart failure. However, molecular mechanisms underlying ventricular chamber development remain incompletely understood. Neddylation is a posttranslational modification that attaches ubiquitin-like protein NEDD8 to protein targets via NEDD8-specific E1-E2-E3 enzymes. Here, we report that neddylation is temporally regulated in the heart and plays a key role in cardiac development. Cardiomyocyte-specific knockout of NAE1, a subunit of the E1 neddylation activating enzyme, significantly decreased neddylated proteins in the heart. Mice lacking NAE1 developed myocardial hypoplasia, ventricular noncompaction, and heart failure at late gestation, which led to perinatal lethality. NAE1 deletion resulted in dysregulation of cell cycle-regulatory genes and blockade of cardiomyocyte proliferation in vivo and in vitro, which was accompanied by the accumulation of the Hippo kinases Mst1 and LATS1/2 and the inactivation of the YAP pathway. Furthermore, reactivation of YAP signaling in NAE1-inactivated cardiomyocytes restored cell proliferation, and YAP-deficient hearts displayed a noncompaction phenotype, supporting an important role of Hippo-YAP signaling in NAE1-depleted hearts. Mechanistically, we found that neddylation regulates Mst1 and LATS2 degradation and that Cullin 7, a NEDD8 substrate, acts as the ubiquitin ligase of Mst1 to enable YAP signaling and cardiomyocyte proliferation. Together, these findings demonstrate a role for neddylation in heart development and, more specifically, in the maturation of ventricular chambers and also identify the NEDD8 substrate Cullin 7 as a regulator of Hippo-YAP signaling.


Assuntos
Ventrículos do Coração/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Proteína NEDD8/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular , Proteínas Culina/genética , Proteínas Culina/metabolismo , Ventrículos do Coração/patologia , Via de Sinalização Hippo , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos/patologia , Proteína NEDD8/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Proteínas de Sinalização YAP
6.
J Mol Cell Cardiol ; 133: 67-74, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31150734

RESUMO

Myocardial ischemia/reperfusion (MI/R) causes loss of cardiomyocytes via oxidative stress-induced cardiomyocyte apoptosis. miR322, orthologous to human miR-424, was identified as an ischemia-induced angiogenic miRNA, but its cellular source and function in the setting of acute MI/R remains largely unknown. Using LacZ-tagged miR322 cluster reporter mice, we observed that vascular endothelial cells are the major cellular source of the miR322 cluster in adult hearts. Moreover, miR322 levels were significantly reduced in the heart at 24 h after MI/R injury. Intramyocardial injection of mimic-miR322 significantly diminished cardiac apoptosis (as determined by expression levels of active caspase 3 by Western blot analysis and immunostaining for TUNEL) and reduced infarct size by about 40%, in association with reduced FBXW7 and increased active Notch 1 levels in the ischemic hearts. FBXW7, which is an ubiquitin ligase that is crucial for activated Notch1 turnover, was identified as a direct target of miR322 via FBXW7 3'UTR reporter assay. Co-injection of FBXW7 plasmid with mimic-miR322 in ischemic hearts abolished the effect of mimic-miR322 to reduce apoptosis and infarct size in MI/R hearts. These data identify FBXW7 as a direct target of miR322 and suggest that miR322 could have potential therapeutic application for cardioprotection against ischemia/reperfusion-induced injury.


Assuntos
Proteína 7 com Repetições F-Box-WD/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Regiões 3' não Traduzidas , Animais , Linhagem Celular , Modelos Animais de Doenças , Proteína 7 com Repetições F-Box-WD/genética , Imunofluorescência , Camundongos , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Interferência de RNA
7.
Am J Physiol Heart Circ Physiol ; 316(6): H1406-H1416, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30925068

RESUMO

Alterations in perinatal conditions (such as preterm birth) is linked to adult health and disease, in particular, the cardiovascular system. Neddylation, a novel posttranslational modification through which the ubiquitin-like protein NEDD8 is conjugated to protein substrates, has emerged as an important mechanism regulating embryonic cardiac chamber maturation. However, the importance of neddylation in postpartum cardiac development has not been investigated. Here, we aimed to determine whether transient, postnatal inhibition of neddylation has immediate and prolonged impact on the structure and function of the neonatal and adult hearts. Sprague-Dawley pups were given three intraperitoneal injections of MLN4924 (MLN), a specific neddylation inhibitor, at postnatal days (P)1, 3, and 5. Cardiac structure and function were temporally assessed during aging and after 2 wk of isoproterenol (ISO) infusion in adulthood. MLN treatment resulted in modest reduction of neddylated proteins in neonatal hearts. The MLN-treated rats developed cardiac hypertrophy and dysfunction by P7, which was accompanied by significantly reduced cardiomyocyte proliferation. At 3 mo of age, cardiac contractile function was restored in MLN-treated rats, but MLN-treated hearts displayed hypertrophic phenotype. Whereas ISO infusion triggered compensatory cardiac hypertrophy without impairing cardiac contractility in the control rats, the MLN-treated rats displayed a similar degree of hypertrophy, which quickly progressed to decompensation with ventricular wall thinning, chamber dilatation, and reduced ejection fraction as well as exacerbated pathological cardiac remodeling. Our findings suggest that neddylation is required for postnatal cardiac development and that perturbation of neddylation during development predisposes adult hearts to cardiac failure under stress conditions. NEW & NOTEWORTHY Our study demonstrates that perinatal perturbation of neddylation induces cardiomyopathy, impairs postnatal cardiac development, and increases susceptibility to catecholamine-induced cardiac dysfunction. The results reveal a previously unappreciated role of neddylation in postnatal cardiac maturation and call for close monitoring for the potential cardiotoxicity of MLN4924 (pevonedistat) and other agents that modify neddylation, especially in pregnant women and preadolescents.


Assuntos
Ciclopentanos/toxicidade , Insuficiência Cardíaca/induzido quimicamente , Hipertrofia Ventricular Esquerda/induzido quimicamente , Isoproterenol , Proteína NEDD8/antagonistas & inibidores , Pirimidinas/toxicidade , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Insuficiência Cardíaca/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Proteína NEDD8/metabolismo , Ratos Sprague-Dawley , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
8.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703292

RESUMO

Cardiac mesenchymal stem cells (C-MSC) play a key role in maintaining normal cardiac function under physiological and pathological conditions. Glycolysis and mitochondrial oxidative phosphorylation predominately account for energy production in C-MSC. Dicer, a ribonuclease III endoribonuclease, plays a critical role in the control of microRNA maturation in C-MSC, but its role in regulating C-MSC energy metabolism is largely unknown. In this study, we found that Dicer knockout led to concurrent increase in both cell proliferation and apoptosis in C-MSC compared to Dicer floxed C-MSC. We analyzed mitochondrial oxidative phosphorylation by quantifying cellular oxygen consumption rate (OCR), and glycolysis by quantifying the extracellular acidification rate (ECAR), in C-MSC with/without Dicer gene deletion. Dicer gene deletion significantly reduced mitochondrial oxidative phosphorylation while increasing glycolysis in C-MSC. Additionally, Dicer gene deletion selectively reduced the expression of ß-oxidation genes without affecting the expression of genes involved in the tricarboxylic acid (TCA) cycle or electron transport chain (ETC). Finally, Dicer gene deletion reduced the copy number of mitochondrially encoded 1,4-Dihydronicotinamide adenine dinucleotide (NADH): ubiquinone oxidoreductase core subunit 6 (MT-ND6), a mitochondrial-encoded gene, in C-MSC. In conclusion, Dicer gene deletion induced a metabolic shift from oxidative metabolism to aerobic glycolysis in C-MSC, suggesting that Dicer functions as a metabolic switch in C-MSC, which in turn may regulate proliferation and environmental adaptation.


Assuntos
RNA Helicases DEAD-box/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Mesenquimais/enzimologia , Mitocôndrias Cardíacas/metabolismo , Miocárdio/enzimologia , Ribonuclease III/metabolismo , Animais , Ciclo do Ácido Cítrico , RNA Helicases DEAD-box/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Ácidos Graxos/genética , Deleção de Genes , Glicólise , Humanos , Camundongos , Mitocôndrias Cardíacas/genética , Oxirredução , RNA de Transferência de Treonina , Ribonuclease III/genética
10.
J Mol Cell Cardiol ; 114: 72-82, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29122578

RESUMO

BACKGROUND: Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs), small non-coding RNAs that post-transcriptionally regulate target genes. MiR-125b-5p is downregulated in patients with end-stage dilated and ischemic cardiomyopathy, and has been proposed as a biomarker of heart failure. We previously reported that the ß-blocker carvedilol promotes cardioprotection via ß-arrestin-biased agonism of ß1-adrenergic receptor while stimulating miR-125b-5p processing in the mouse heart. We hypothesize that ß1-adrenergic receptor/ß-arrestin1-responsive miR-125b-5p confers the improvement of cardiac function and structure after acute myocardial infarction. METHODS AND RESULTS: Using cultured cardiomyocyte (CM) and in vivo approaches, we show that miR-125b-5p is an ischemic stress-responsive protector against CM apoptosis. CMs lacking miR-125b-5p exhibit increased susceptibility to stress-induced apoptosis, while CMs overexpressing miR-125b-5p have increased phospho-AKT pro-survival signaling. Moreover, we demonstrate that loss-of-function of miR-125b-5p in the mouse heart causes abnormalities in cardiac structure and function after acute myocardial infarction. Mechanistically, the improvement of cardiac function and structure elicited by miR-125b-5p is in part attributed to repression of the pro-apoptotic genes Bak1 and Klf13 in CMs. CONCLUSIONS: In conclusion, these findings reveal a pivotal role for miR-125b-5p in regulating CM survival during acute myocardial infarction.


Assuntos
Apoptose , Carvedilol/farmacologia , Proteínas de Ciclo Celular/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Proteínas Repressoras/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Animais , Apoptose/efeitos dos fármacos , Cardiotônicos/metabolismo , Linhagem Celular , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos Sprague-Dawley , Disfunção Ventricular Esquerda/genética
11.
J Mol Cell Cardiol ; 118: 225-236, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29627294

RESUMO

RATIONALE: MicroRNAs (miRs) are small, non-coding RNAs that function to post-transcriptionally regulate target genes. First transcribed as primary miR transcripts (pri-miRs), they are enzymatically processed by Drosha into premature miRs (pre-miRs) and further cleaved by Dicer into mature miRs. Initially discovered to desensitize ß-adrenergic receptor (ßAR) signaling, ß-arrestins are now well-appreciated to modulate multiple pathways independent of G protein signaling, a concept known as biased signaling. Using the ß-arrestin-biased ßAR ligand carvedilol, we previously showed that ß-arrestin1 (not ß-arrestin2)-biased ß1AR (not ß2AR) cardioprotective signaling stimulates Drosha-mediated processing of six miRs by forming a multi-protein nuclear complex, which includes ß-arrestin1, the Drosha microprocessor complex and a single-stranded RNA binding protein hnRNPA1. OBJECTIVE: Here, we investigate whether ß-arrestin-mediated ßAR signaling induced by carvedilol could regulate Dicer-mediated miR maturation in the cytoplasm and whether this novel mechanism promotes cardioprotective signaling. METHODS AND RESULTS: In mouse hearts, carvedilol indeed upregulates three mature miRs, but not their pre-miRs and pri-miRs, in a ß-arrestin 1- or 2-dependent manner. Interestingly, carvedilol-mediated activation of miR-466g or miR-532-5p, and miR-674 is dependent on ß2ARs and ß1ARs, respectively. Mechanistically, ß-arrestin 1 or 2 regulates maturation of three newly identified ßAR/ß-arrestin-responsive miRs (ß-miRs) by associating with the Dicer maturation RNase III enzyme on three pre-miRs of ß-miRs. Myocardial cell approaches uncover that despite their distinct roles in different cell types, ß-miRs act as gatekeepers of cardiac cell functions by repressing deleterious targets. CONCLUSIONS: Our findings indicate a novel role for ßAR-mediated ß-arrestin signaling activated by carvedilol in Dicer-mediated miR maturation, which may be linked to its protective mechanisms.


Assuntos
Agonistas Adrenérgicos beta/farmacologia , Cardiotônicos/metabolismo , MicroRNAs/metabolismo , Receptores Adrenérgicos beta/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Carvedilol/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Modelos Biológicos , Miocárdio/metabolismo , Miocárdio/patologia , Ratos Sprague-Dawley
12.
Acta Pharmacol Sin ; 39(7): 1100-1109, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29565037

RESUMO

Recent advancements in genome-wide analyses and RNA-sequencing technologies led to the discovery of small noncoding RNAs, such as microRNAs (miRs), as well as both linear long noncoding RNAs (lncRNAs) and circular long noncoding RNAs (circRNAs). The importance of miRs and lncRNAs in the treatment, prognosis and diagnosis of cardiovascular diseases (CVDs) has been extensively reported. We also previously reviewed their implications in therapies and as biomarkers for CVDs. More recently, circRNAs have also emerged as important regulators in CVDs. CircRNAs are circular genome products that are generated by back splicing of specific regions of pre-messenger RNAs (pre-mRNAs). Growing interest in circRNAs led to the discovery of a wide array of their pathophysiological functions. CircRNAs have been shown to be key regulators of CVDs such as myocardial infarction, atherosclerosis, cardiomyopathy and cardiac fibrosis. Accordingly, circRNAs have been recently proposed as potential therapeutic targets and biomarkers for CVDs. In this review, we summarize the current state of the literature on circRNAs, starting with their biogenesis and global mechanisms of actions. We then provide a synopsis of their involvement in various CVDs. Lastly, we emphasize the great potential of circRNAs as biomarkers for the early detection of CVDs, and discuss several patents and recent papers that highlight the utilization of circRNAs as promising biomarkers.


Assuntos
Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/tratamento farmacológico , RNA Longo não Codificante/sangue , Animais , Biomarcadores/sangue , Humanos
13.
Acta Pharmacol Sin ; 39(4): 569-578, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29542682

RESUMO

Cardiac mesenchymal stem cells (C-MSCs) are endogenous cardiac stromal cells that play a role in heart repair after injury. C-MSC-derived exosomes (Exo) have shown protective effects against apoptosis induced by acute myocardial ischemia/reperfusion. Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine (TCM) formula used in China for the treatment of acute myocardial ischemia, which contains tetramethylpyrazine (TMP) and borneol (BOR) as major components. In this study, we investigated whether SJP treatment affected exosome release from C-MSCs in vitro. C-MSCs prepared from mice were treated with SJP (62.5 µg/mL), TMP (25 µg/mL) or BOR (15 µg/mL). Using an acetylcholinesterase activity assay, we found that both SJP and TMP treatment significantly increased exosome secretion compared to the control ethanol treatment. The neutral sphingomyelinase 2 (nSMase2) pathway was important in exosome formation and packaging. But neither the level of nSMase2 mRNA nor the level of protein changed following SJP, TMP or BOR treatment, suggesting that SJP stimulated exosome release via an nSMase2-independent pathway. The Rab27a and Rab27b GTPases controlled different steps of the exosome secretion pathway. We showed that SJP treatment significantly increased the protein levels of Rab27a, SYTL4 (Rab27a effector) and Rab27b compared with the control treatment. SJP treatment also significantly upregulated the mRNA level of Rab27b, rather than Rab27a. Moreover, SJP-induced increase of C-MSC-exosome release was inhibited by Rab27b knockdown, suggesting that SJP promotes exosome secretion from C-MSCs via a GTPase-dependent pathway. This study reveals a novel mechanism for SJP in modulating cardiac homeostasis.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Miocárdio/metabolismo , Animais , Canfanos/farmacologia , Células Cultivadas , Técnicas de Silenciamento de Genes , Masculino , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia , RNA Mensageiro/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/metabolismo
14.
Acta Pharmacol Sin ; 39(4): 579-586, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29542684

RESUMO

Suxiao Jiuxin pill (SJP) is a traditional Chinese medicine for the treatment of acute coronary syndrome in China, which contains two principal components, tetramethylpyrazine (TMP) and borneol (BOR). Thus far, however, the molecular mechanisms underlying the beneficial effects of SJP on the cardiac microenvironment are unknown. Cardiac mesenchymal stem cells (C-MSCs) communicate with cardiomyocytes (CMs) through the release of microvesicles (exosomes) to restore cardiac homeostasis and elicit repair, in part through epigenetic regulatory mechanisms. In this study, we examined whether SJP treatment altered C-MSC-derived exosomes (SJP-Exos) to cause epigenetic chromatic remodeling in recipient CMs. C-MSC isolated from mouse hearts were pretreated with SJP (SJP-Exos), TMP (TMP-Exos) or BOR (BOR-Exos). Then, HL-1 cells, a mouse cardiomyocyte line, were treated with exosomes from control C-MSCs (Ctrl-Exos), SJP-Exos, TMP-Exos or BOR-Exos. Treatment with SJP-Exos significantly increased the protein levels of histone 3 lysine 27 trimethylation (H3K27me3), a key epigenetic chromatin marker for cardiac transcriptional suppression, in the HL-1 cells. To further explore the mechanisms of SJP-Exo-mediated H3K27me3 upregulation, we assessed the mRNA expression levels of key histone methylases (EZH1, EZH2 and EED) and demethylases (JMJD3 and UTX) in the exosome-treated HL-1 cells. Treatment with SJP-Exo selectively suppressed UTX expression in the recipient HL-1 cells. Furthermore, PCNA, an endogenous marker of cell replication, was significantly higher in SJP-Exo-treated HL-1 cells than in Ctrl-Exo-treated HL-1 cells. These results show that SJP-Exos increase cardiomyocyte proliferation and demonstrate that SJP can modulate C-MSC-derived exosomes to cause epigenetic chromatin remodeling in recipient cardiomyocytes; consequently, SJP-Exos might be used to promote cardiomyocyte proliferation.


Assuntos
Medicamentos de Ervas Chinesas/farmacologia , Exossomos/metabolismo , Histona Desmetilases/genética , Células-Tronco Mesenquimais/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Canfanos/farmacologia , Células Cultivadas , Regulação para Baixo , Histonas/metabolismo , Masculino , Metilação/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Pirazinas/farmacologia
15.
J Mol Cell Cardiol ; 102: 53-60, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27913284

RESUMO

BACKGROUND: Diabetic cardiomyopathy is a major risk factor in diabetic patients but its pathogenesis remains poorly understood. The ubiquitin-proteasome system (UPS) facilitates protein quality control by degrading unnecessary and damaged proteins in eukaryotic cells, and dysfunction of UPS is implicated in various cardiac diseases. However, the overall functional status of the UPS and its pathophysiological role in diabetic cardiomyopathy have not been determined. METHODS AND RESULTS: Type I diabetes was induced in wild-type and transgenic mice expressing a UPS functional reporter (GFPdgn) by injections of streptozotocin (STZ). STZ-induced diabetes progressively impaired cardiac UPS function as evidenced by the accumulation of GFPdgn proteins beginning two weeks after diabetes induction, and by a buildup of total and lysine (K) 48-linked polyubiquitinated proteins in the heart. To examine the functional role of the UPS in diabetic cardiomyopathy, cardiac overexpression of PA28α (PA28αOE) was used to enhance proteasome function in diabetic mouse hearts. PA28αOE diabetic mice displayed exhibited restoration of cardiac UPS function, as demonstrated by the diminished accumulation of GFPdgn and polyubiquitinated proteins. Moreover, PA28αOE diabetic mice exhibited reduced myocardial collagen deposition, decreased cardiomyocyte apoptosis, and improved cardiac systolic and diastolic function. CONCLUSION: Impairment of cardiac UPS function is an early event in STZ-induced diabetes. Overexpression of PA28α attenuates diabetes-induced proteotoxic stress and cardiomyopathy, suggesting a potential therapeutic role for enhancement of cardiac proteasome function in this disorder.


Assuntos
Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/metabolismo , Miocárdio/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Animais , Diabetes Mellitus Experimental , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Expressão Gênica , Genes Reporter , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia , Complexo de Endopeptidases do Proteassoma/genética , Ubiquitina/metabolismo , Remodelação Ventricular/genética
16.
J Biol Chem ; 290(39): 23850-62, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26260793

RESUMO

Neddylation is a posttranslational modification that controls diverse biological processes by covalently conjugating the ubiquitin-like protein NEDD8 to specific targets. Neddylation is commonly mediated by NEDD8-specific enzymes (typical neddylation) and, sometimes, by ubiquitin enzymes (atypical neddylation). Although typical neddylation is known to regulate protein function in many ways, the regulatory mechanisms and biological consequence of atypical neddylation remain largely unexplored. Here we report that NEDD8 conjugates were accumulated in the diseased hearts from mouse models and human patients. Proteotoxic stresses induced typical and atypical neddylation in cardiomyocytes. Loss of NUB1L exaggerated atypical neddylation, whereas NUB1L overexpression repressed atypical neddylation through promoting the degradation of NEDD8. Activation of atypical neddylation accumulated a surrogate misfolded protein, GFPu. In contrast, suppression of atypical neddylation by NUB1L overexpression enhanced GFPu degradation. Moreover, NUB1L depletion accumulated a cardiomyopathy-linked misfolded protein, CryAB(R120G), whereas NUB1L overexpression promoted its degradation through suppressing neddylation of ubiquitinated proteins in cardiomyocytes. Consequently, NUB1L protected cells from proteotoxic stress-induced cell injury. In summary, these data indicate that NUB1L suppresses atypical neddylation and promotes the degradation of misfolded proteins by the proteasome. Our findings also suggest that induction of NUB1L could potentially become a novel therapeutic strategy for diseases with increased proteotoxic stress.


Assuntos
Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Fatores de Transcrição/metabolismo , Ubiquitinas/metabolismo , Cadeia B de alfa-Cristalina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Substituição de Aminoácidos , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Mutação de Sentido Incorreto , Proteína NEDD8 , Complexo de Endopeptidases do Proteassoma/genética , Fatores de Transcrição/genética , Ubiquitinas/genética , Cadeia B de alfa-Cristalina/genética
17.
Am J Physiol Heart Circ Physiol ; 311(2): H371-83, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27288437

RESUMO

The nonselective ß-adrenergic receptor antagonist (ß-blocker) carvedilol has been shown to protect against myocardial injury, but the detailed underlying mechanisms are unclear. We recently reported that carvedilol stimulates the processing of microRNA (miR)-199a-3p and miR-214 in the heart via ß-arrestin1-biased ß1-adrenergic receptor (ß1AR) cardioprotective signaling. Here, we investigate whether these ß-arrestin1/ß1AR-responsive miRs mediate the beneficial effects of carvedilol against simulated ischemia/reperfusion (sI/R). Using cultured cardiomyocyte cell lines and primary cardiomyocytes, we demonstrate that carvedilol upregulates miR-199a-3p and miR-214 in both ventricular and atrial cardiomyocytes subjected to sI/R. Overexpression of the two miRs in cardiomyocytes mimics the effects of carvedilol to activate p-AKT survival signaling and the expression of a downstream pluripotency marker Sox2 in response to sI/R. Moreover, carvedilol-mediated p-AKT activation is abolished by knockdown of either miR-199a-3p or miR-214. Along with previous studies to directly link the cardioprotective actions of carvedilol to upregulation of p-AKT/stem cell markers, our findings suggest that the protective roles of carvedilol during ischemic injury are in part attributed to activation of these two protective miRs. Loss of function of miR-199a-3p and miR-214 also increases cardiomyocyte apoptosis after sI/R. Mechanistically, we demonstrate that miR-199a-3p and miR-214 repress the predictive or known apoptotic target genes ddit4 and ing4, respectively, in cardiomyocytes. These findings suggest pivotal roles for miR-199a-3p and miR-214 as regulators of cardiomyocyte survival and contributors to the functional benefits of carvedilol therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , MicroRNAs/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Propanolaminas/farmacologia , Traumatismo por Reperfusão/genética , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Carvedilol , Linhagem Celular , Células Cultivadas , Simulação por Computador , Immunoblotting , Marcação In Situ das Extremidades Cortadas , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Traumatismo por Reperfusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima/efeitos dos fármacos
18.
Circ Res ; 114(5): 833-44, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24334028

RESUMO

RATIONALE: MicroRNAs (miRs) are small, noncoding RNAs that function to post-transcriptionally regulate gene expression. First transcribed as long primary miR transcripts (pri-miRs), they are enzymatically processed in the nucleus by Drosha into hairpin intermediate miRs (pre-miRs) and further processed in the cytoplasm by Dicer into mature miRs where they regulate cellular processes after activation by a variety of signals such as those stimulated by ß-adrenergic receptors (ßARs). Initially discovered to desensitize ßAR signaling, ß-arrestins are now appreciated to transduce multiple effector pathways independent of G-protein-mediated second messenger accumulation, a concept known as biased signaling. We previously showed that the ß-arrestin-biased ßAR agonist, carvedilol, activates cellular pathways in the heart. OBJECTIVE: Here, we tested whether carvedilol could activate ß-arrestin-mediated miR maturation, thereby providing a novel potential mechanism for its cardioprotective effects. METHODS AND RESULTS: In human cells and mouse hearts, carvedilol upregulates a subset of mature and pre-miRs, but not their pri-miRs, in ß1AR-, G-protein-coupled receptor kinase 5/6-, and ß-arrestin1-dependent manner. Mechanistically, ß-arrestin1 regulates miR processing by forming a nuclear complex with hnRNPA1 and Drosha on pri-miRs. CONCLUSIONS: Our findings indicate a novel function for ß1AR-mediated ß-arrestin1 signaling activated by carvedilol in miR biogenesis, which may be linked, in part, to its mechanism for cell survival.


Assuntos
Arrestinas/metabolismo , MicroRNAs/genética , Receptores Adrenérgicos beta 1/metabolismo , Transdução de Sinais/fisiologia , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Animais , Arrestinas/genética , Carbazóis/farmacologia , Carvedilol , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Quinases de Receptores Acoplados a Proteína G/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/metabolismo , Propanolaminas/farmacologia , Processamento Pós-Transcricional do RNA/fisiologia , Receptores Adrenérgicos beta 1/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , beta-Arrestinas
19.
Int J Mol Sci ; 17(3): 356, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-26978351

RESUMO

Protein-coding genes account for only a small part of the human genome; in fact, the vast majority of transcripts are comprised of non-coding RNAs (ncRNAs) including long ncRNAs (lncRNAs) and small ncRNAs, microRNAs (miRs). Accumulating evidence indicates that ncRNAs could play critical roles in regulating many cellular processes which are often implicated in health and disease. For example, ncRNAs are aberrantly expressed in cancers, heart diseases, and many other diseases. LncRNAs and miRs are therefore novel and promising targets to be developed into biomarkers for diagnosis and prognosis as well as treatment options. The interaction between lncRNAs and miRs as well as its pathophysiological significance have recently been reported. Mechanistically, it is believed that lncRNAs exert "sponge-like" effects on various miRs, which subsequently inhibits miR-mediated functions. This crosstalk between two types of ncRNAs frequently contributes to the pathogenesis of the disease. In this review, we provide a summary of the recent studies highlighting the interaction between these ncRNAs and the effects of this interaction on disease pathogenesis and regulation.


Assuntos
Doença/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Progressão da Doença , Regulação da Expressão Gênica , Humanos
20.
Physiol Genomics ; 47(9): 376-85, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26152686

RESUMO

Chronic treatment with the ß-blocker carvedilol has been shown to reduce established maladaptive left ventricle (LV) hypertrophy and to improve LV function in experimental heart failure. However, the detailed mechanisms by which carvedilol improves LV failure are incompletely understood. We previously showed that carvedilol is a ß-arrestin-biased ß1-adrenergic receptor ligand, which activates cellular pathways in the heart independent of G protein-mediated second messenger signaling. More recently, we have demonstrated by microRNA (miR) microarray analysis that carvedilol upregulates a subset of mature and pre-mature miRs, but not their primary miR transcripts in mouse hearts. Here, we next sought to identify the effects of carvedilol on LV gene expression on a genome-wide basis. Adult mice were treated with carvedilol or vehicle for 1 wk. RNA was isolated from LV tissue and hybridized for microarray analysis. Gene expression profiling analysis revealed a small group of genes differentially expressed after carvedilol treatment. Further analysis categorized these genes into pathways involved in tight junction, malaria, viral myocarditis, glycosaminoglycan biosynthesis, and arrhythmogenic right ventricular cardiomyopathy. Genes encoding proteins in the tight junction, malaria, and viral myocarditis pathways were upregulated in the LV by carvedilol, while genes encoding proteins in the glycosaminoglycan biosynthesis and arrhythmogenic right ventricular cardiomyopathy pathways were downregulated by carvedilol. These gene expression changes may reflect the molecular mechanisms that underlie the functional benefits of carvedilol therapy.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Carbazóis/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Propanolaminas/farmacologia , Animais , Cardiomiopatias/genética , Carvedilol , Glicosaminoglicanos/biossíntese , Glicosaminoglicanos/genética , Malária/genética , Camundongos Endogâmicos C57BL , Miocardite/genética , Proteínas/genética , Proteínas/metabolismo , Função Ventricular Esquerda/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa