Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 45(5): 2109-2115, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33906534

RESUMO

The self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) is a novel small-interfering RNA (siRNA) nanoparticle that is used for treatment of pulmonary fibrosis. We investigated the potential genotoxicity of SAMiRNA-AREG based on the guidelines published by the Organization for Economic Cooperation and Development. In the bacterial reverse mutation assay (Ames test), SAMiRNA-AREG did not induce mutations in Salmonella typhimurium TA100, TA1535, TA98, and TA1537 and Escherichia coli WP2uvrA at concentrations of up to 3000 µg/plate with or without metabolic activation. The SAMiRNA-AREG (concentrations up to 500 µg/mL) did not induce chromosomal aberrations in cultured Chinese hamster lung cells with or without metabolic activation. In the in vivo mouse bone marrow micronucleus assay, the SAMiRNA-AREG (concentrations up to 300 mg/kg body weight) did not affect the proportions of polychromatic erythrocytes and total erythrocytes, nor did it increase the number of micronucleated polychromatic erythrocytes in ICR mice. Collectively, these results suggest that SAMiRNA-AREG is safe with regard to genotoxicity such as mutagenesis or clastogenesis under the present experimental conditions. These results might support the safety of SAMiRNA-AREG as a potential therapeutic agent for pharmaceutical development.


Assuntos
Micelas , Nanopartículas , Anfirregulina/genética , Animais , Aberrações Cromossômicas , Cricetinae , Cricetulus , Escherichia coli/genética , Camundongos , Camundongos Endogâmicos ICR , Testes para Micronúcleos , Testes de Mutagenicidade , Nanopartículas/toxicidade , RNA Interferente Pequeno/genética
2.
Int J Mol Sci ; 23(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35269890

RESUMO

(1) Background: Progression of chronic obstructive pulmonary disease (COPD) leads to irreversible lung damage and inflammatory responses; however, biomarker discovery for monitoring of COPD progression remains challenging. (2) Methods: This study evaluated the metabolic mechanisms and potential biomarkers of COPD through the integrated analysis and receiver operating characteristic (ROC) analysis of metabolic changes in lung, plasma, and urine, and changes in morphological characteristics and pulmonary function in a model of PPE/LPS-induced COPD exacerbation. (3) Results: Metabolic changes in the lungs were evaluated as metabolic reprogramming to counteract the changes caused by the onset of COPD. In plasma, several combinations of phenylalanine, 3-methylhistidine, and polyunsaturated fatty acids have been proposed as potential biomarkers; the α-aminobutyric acid/histidine ratio has also been reported, which is a novel candidate biomarker for COPD. In urine, a combination of succinic acid, isocitric acid, and pyruvic acid has been proposed as a potential biomarker. (4) Conclusions: This study proposed potential biomarkers in plasma and urine that reflect altered lung metabolism in COPD, concurrently with the evaluation of the COPD exacerbation model induced by PPE plus LPS administration. Therefore, understanding these integrative mechanisms provides new insights into the diagnosis, treatment, and severity assessment of COPD.


Assuntos
Lipopolissacarídeos , Doença Pulmonar Obstrutiva Crônica , Animais , Biomarcadores/metabolismo , Modelos Animais de Doenças , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos , Equipamento de Proteção Individual , Doença Pulmonar Obstrutiva Crônica/diagnóstico
3.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36555376

RESUMO

Mitochondria are organelles that play a vital role in cellular survival by supplying ATP and metabolic substrates via oxidative phosphorylation and the Krebs cycle. Hence, mitochondrial dysfunction contributes to many human diseases, including metabolic syndromes, neurodegenerative diseases, cancer, and aging. Mitochondrial transfer between cells has been shown to occur naturally, and mitochondrial transplantation is beneficial for treating mitochondrial dysfunction. In this study, the migration of mitochondria was tracked in vitro and in vivo using mitochondria conjugated with green fluorescent protein (MTGFP). When MTGFP were used in a coculture model, they were selectively internalized into lung fibroblasts, and this selectivity depended on the mitochondrial functional states of the receiving fibroblasts. Compared with MTGFP injected intravenously into normal mice, MTGFP injected into bleomycin-induced idiopathic pulmonary fibrosis model mice localized more abundantly in the lung tissue, indicating that mitochondrial homing to injured tissue occurred. This study shows for the first time that exogenous mitochondria are preferentially trafficked to cells and tissues in which mitochondria are damaged, which has implications for the delivery of therapeutic agents to injured or diseased sites.


Assuntos
Fibrose Pulmonar Idiopática , Mitocôndrias , Camundongos , Humanos , Animais , Mitocôndrias/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibroblastos/metabolismo
4.
Int J Toxicol ; 40(5): 453-465, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34286615

RESUMO

The present study investigated the potential subchronic toxicity of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG) in mice. The test reagent was administered once-daily by intravenous injection for 4 weeks at 0, 100, 200, or 300 mg/kg/day doses. Additional recovery groups (vehicle control and high dose groups) were observed for a 2-week recovery period. During the test period, mortality, clinical signs, body weight, food consumption, ophthalmology, urinalysis, hematology, serum biochemistry, gross pathology, organ weight, and histopathology were examined. An increase in the percentages of basophil and large unstained cells was observed in the 200 and 300 mg/kg/day groups of both sexes. In addition, the absolute and relative weights of the spleen were higher in males given 300 mg/kg/day relative to the concurrent controls. However, these findings were considered of no toxicological significance because the changes were minimal, were not accompanied by other relevant results (eg, correlating microscopic changes), and were not observed at the end of the 2-week recovery period indicating recovery of the findings. Based on the results, SAMiRNA-AREG did not cause treatment-related adverse effects at dose levels of up to 300 mg/kg/day in mice after 4-week repeated intravenous doses. Under these conditions, the no-observed-adverse-effect level of the SAMiRNA-AREG was ≥300 mg/kg/day in both sexes and no target organs were identified.


Assuntos
Anfirregulina/administração & dosagem , Nanopartículas/administração & dosagem , RNA Interferente Pequeno/administração & dosagem , Anfirregulina/toxicidade , Animais , Feminino , Injeções Intravenosas , Masculino , Camundongos Endogâmicos ICR , Micelas , Nanopartículas/toxicidade , Nível de Efeito Adverso não Observado , RNA Interferente Pequeno/toxicidade , Testes de Toxicidade Subaguda
5.
Metabolomics ; 15(8): 111, 2019 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-31422500

RESUMO

INTRODUCTION: Polyhexamethylene guanidine phosphate (PHMG) has been used as a disinfectant and biocide, and was known to be harmless and non-toxic. However, in 2011, PHMG used as a humidifier disinfectant was reported to be associated with lung diseases, such as, fibrosis in the toxicant studies on pulmonary fibrosis by PHMG. However, no metabolomics study has been performed in PHMG-induced mouse models of pulmonary fibrosis. OBJECTIVES: We performed a metabolomic study to understand the biochemical events that occur in bleomycin (BLM)- and PHMG-induced mouse models of pulmonary fibrosis using gas chromatography-mass spectrometry (GC-MS), LC-tandem MS, and GC-tandem MS. RESULTS: The levels of 61 metabolites of 30 amino acids, 13 organic acids, 12 fatty acids, 5 polyamines, and oxidized glutathione were determined in the pulmonary tissues of mice with BLM- and PHMG-induced pulmonary fibrosis and in normal controls. Principal component analysis and partial least squares discriminant analysis used to compare level of these 61 metabolites in pulmonary tissues. Levels of metabolites were significantly different in the BLM and PHMG groups as compared with the control group. In particular, the BLM- and PHMG-induced pulmonary fibrosis models showed elevated collagen synthesis and oxidative stress and metabolic disturbance of TCA related organic acids including fumaric acid by NADPH oxidase. In addition, polyamine metabolism showed severe alteration in the PHMG group than that of the BLM group. CONCLUSION: This result suggests PHMG will be able to induce pulmonary fibrosis by arginine metabolism and NADPH oxidase signaling.


Assuntos
Bleomicina/metabolismo , Modelos Animais de Doenças , Guanidinas/metabolismo , Metabolômica , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/metabolismo , Animais , Bleomicina/administração & dosagem , Bleomicina/análise , Cromatografia Gasosa , Cromatografia Líquida , Guanidinas/administração & dosagem , Guanidinas/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/patologia , Espectrometria de Massas em Tandem
6.
Toxicology ; 505: 153827, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729513

RESUMO

Pyroptosis is a form of programmed cell death characterized by gasdermin (GSDM)-mediated pore formation in the cell membrane, resulting in the release of pro-inflammatory cytokines and cellular lysis. Increasing evidence has shown that pyroptosis is responsible for the progression of various pulmonary disorders. The inhalation of polyhexamethylene guanidine (PHMG) causes severe lung inflammation and pulmonary toxicity; however, the underlying mechanisms are unknown. Therefore, in this study, we investigate the role of pyroptosis in PHMG-induced pulmonary toxicity. We exposed bronchial epithelial cells, BEAS-2B, to PHMG phosphate (PHMG-p) and evaluated cell death type, reactive oxygen species (ROS) levels, and relative expression levels of pyroptosis-related proteins. Our data revealed that PHMG-p reduced viability and induced morphological alterations in BEAS-2B cells. Exposure to PHMG-p induced excessive accumulation of mitochondrial ROS (mtROS) in BEAS-2B cells. PHMG-p activated caspase-dependent apoptosis as well as NLRP3/caspase-1/GSDMD-mediated- and caspase-3/GSDME-mediated pyroptosis through mitochondrial oxidative stress in BEAS-2B cells. Notably, PHMG-p reduced mitochondrial respiratory function and induced the translocation of Bax and cleaved GSDM into the mitochondria, leading to mitochondrial dysfunction. Our results enhanced our understanding of PHMG-p-induced lung toxicity by demonstrating that PHMG-p induces pyroptosis via mtROS-induced mitochondrial dysfunction in bronchial epithelial cells.


Assuntos
Brônquios , Células Epiteliais , Guanidinas , Mitocôndrias , Piroptose , Espécies Reativas de Oxigênio , Piroptose/efeitos dos fármacos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/metabolismo , Linhagem Celular , Guanidinas/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
7.
Toxicol Lett ; 362: 1-16, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430302

RESUMO

Following the humidifier disinfectant incident in Korea, polyhexamethylene guanidine phosphate (PHMG-P) has been used to establish lung fibrosis model animals. Herein, we investigated time-dependent changes after a single PHMG-P instillation (22 µg/lung) to identify the underlying pathogenesis and immune response involved in PHMG-P-induced lung fibrosis. Compared to control mice, body weight loss and blood biochemical and hematological changes were more remarkable in PHMG-P-instilled mice, an increase of total cell counts, infiltration of macrophages and neutrophils and necrotic cell death were also more notable in the lungs of PHMG-P-instilled mice. Pathological lesions were detected from Day 1 after exposure, deteriorating with time. In addition, secretion of anti-inflammatory mediators was rapidly inhibited from 6 h after exposure, and level of IL-24, a tissue repair-related cytokine, was up-regulated in the lungs of PHMG-P-instilled mice until Day 21 post-exposure. In vitro tests using BEAS-2B cells showed that PHMG-P disturbed structural and functional homeostasis of organelles and that intracellular ROS increase was considered as an important cause of PHMG-P-induced cell death. Additionally, co-culture with DNA, a polyanionic compound, clearly inhibited PHMG-P-induced necrosis, and increased IL-1ß and TNF-α level and decreased IL-6 and IL-8 levels were observed following exposure to PHMG-P. Meanwhile, IL-8 secretion increased in cells exposed to PHMG-P-induced cell debris. Therefore, we suggest that necrotic cell debris may importantly contribute to the PHMG-P-induced inflammatory response and pathogenesis. In addition, PHMG-P-induced necrosis may be initiated by high affinity between PHMG-P and cell membrane.


Assuntos
Desinfetantes , Fibrose Pulmonar , Animais , Desinfetantes/toxicidade , Guanidinas/toxicidade , Interleucina-8 , Camundongos , Necrose/induzido quimicamente , Fibrose Pulmonar/patologia
8.
Respir Physiol Neurobiol ; 296: 103802, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34653662

RESUMO

Pulmonary fibrosis (PF) is a respiratory disease that causes serious respiratory problems. The effects of French marine pine bark extract (Pycnogenol®), with antioxidant and anti-inflammatory properties, were investigated on lung fibrosis in polyhexamethylene guanidine (PHMG)-treated mice. Mice were separated into four groups (n = 6): vehicle control (VC, saline 50 µl); PHMG (1.1 mg/kg); PHMG + Pycnogenol® (0.3 mg/kg/day); and PHMG + Pycnogenol® (1 mg/kg/day). PF was induced via intratracheal instillation of PHMG. Treatment with PHMG decreased body weight and increased lung weight, both of which were improved by treatment with PHMG + Pycnogenol® (1 mg/kg). Enzyme-linked immunosorbent assay, western blotting, and PCR revealed that Pycnogenol® attenuated PHMG-induced increase in inflammatory cytokines and fibrosis-related factors in a dose-dependent manner. Finally, histopathological analysis revealed reduced inflammation/fibrosis in the PHMG + Pycnogenol® (1 mg/kg) group. Collectively, the results indicate that Pycnogenol® can be used to treat PF as it hinders fibrosis progression by inhibiting inflammatory responses in the lungs of PHMG-treated mice.


Assuntos
Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Extratos Vegetais/farmacologia , Fibrose Pulmonar/tratamento farmacológico , Animais , Biguanidas/farmacologia , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente
9.
J Toxicol Sci ; 46(10): 487-497, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602533

RESUMO

Cigarette smoke (CS) is the leading cause of chronic pulmonary diseases, including lung cancer, chronic obstructive pulmonary disease, and pulmonary fibrosis. In this study, we aimed to investigate the effects of repeated CS exposure on polyhexamethylene guanidine (PHMG)-induced pulmonary fibrosis in mice. A single intratracheal instillation of 0.6 mg/kg PHMG enhanced the immune response of mice by increasing the number of total and specific inflammatory cell types in the bronchoalveolar lavage fluid. It induced histopathological changes such as granulomatous inflammation/fibrosis and macrophage infiltration in the lungs. These responses were upregulated upon exposure to a combination of PHMG and CS. In contrast, a 4-hr/day exposure to 300 mg/m3 CS alone for 2 weeks by nose-only inhalation resulted in minimal inflammation in the mouse lung. Furthermore, PHMG administration increased the expression of fibrogenic mediators, especially in the pulmonary tissues of the PHMG + CS group compared with that in the PHMG alone group. However, there was no upregulation in the expression of inflammatory cytokines following exposure to a combination of PHMG and CS. Our results demonstrate that repeated exposure to CS may promote the development of PHMG-induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Animais , Líquido da Lavagem Broncoalveolar , Guanidina , Guanidinas/toxicidade , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/patologia , Fumaça/efeitos adversos , Fumar
10.
Toxicol Rep ; 8: 839-845, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33912399

RESUMO

The present safety pharmacology core battery studies (neurobehavior, respiratory, cardiovascular system, and human ether a-go-go (hERG) channel current) investigated the potential harmful effects of self-assembled-micelle inhibitory RNA-targeting amphiregulin (SAMiRNA-AREG). The SAMiRNA-AREG was administered by single intravenous injection at up to 300 mg/kg and 100 mg/kg in mice and monkeys, respectively. The hERG assay was performed in Chinese hamster ovary (CHO) cells at SAMiRNA-AREG concentrations of up to 200 µg/mL. In the evaluation on neurobehavior, a transient decrease in body temperature was found at 0.5 h (30 min) post-dose at both sexes in mice, with a single 300 mg/kg dose of SAMiRNA-AREG. However, these effects had returned to normal at 1 h post-dose. In the evaluation on hERG channel current, there were statistically significant differences in the inhibition of peak hERG potassium channel current between the 20, 100, and 200 µg/mL SAMiRNA-AREG treatment groups and the vehicle control group. However, these effects were less potent than that of E-4031, a positive control article. For the respiratory and cardiovascular systems, no treatment-related changes were observed in mice or monkeys. Thus, under these experimental conditions, these studies suggest that SAMiRNA-AREG showed no adverse effects on the neurobehavior, respiratory, and cardiovascular function.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa