Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(20): 14012-14021, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38738871

RESUMO

Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.

2.
Nano Lett ; 22(4): 1734-1740, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35138110

RESUMO

The development of a stepwise synthetic strategy for Au ring-in-a-triangle nanoframes with a high degree of structural solidity is essential to the advancement of highly amplified near-field focusing. This strategy leads to the formation of an inscribed nanoring in a triangular metal frame with stability to withstand elevated temperatures and an oxidizing environment, which is critical for successful single-particle surface-enhanced Raman scattering (SERS). The existence of inscribed nanorings plays an important role in enhancing the so-called "lightning rod effect," whereby the electromagnetic near-field enhancement occurs on the highly curved curvature of a metallic interface. We evaluated the corresponding single-particle SERS as a function of the thickness of the rims and then constructed two-dimensional (2D) bulk SERS substrates, wherein an ensemble of hotspots exists. The synergic contribution from both inter- and intrahotspots allowed the outstanding linearity of the calibration curve and the lowest limit of detection, ∼10-18 M for the analyte concentration.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos
3.
J Am Chem Soc ; 143(37): 15113-15119, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34369765

RESUMO

We designed complex Au nanorings with intertwined triple rings (ANITs) in a single entity to amplify the efficacy of near-field focusing. Such a complex and unprecedented morphology at the nanoscale was realized through on-demand multistepwise reactions. Triangular nanoprisms were first sculpted into circular nanorings, followed by a series of chemical etching and deposition reactions eventually leading to ANITs wherein thin metal bridges hold the structure together without any linker molecules. In the multistepwise reaction, the well-faceted growth pattern of Au, which induces the growth of two distinctive flat facets in a lateral direction, is important to evolve the morphology from single to multiple nanorings. Although our synthesis proceeds through multiple steps in one batch without purification steps, it shows a remarkably high yield (>∼90%) at the final stage. The obtained high degree of homogeneity (in both shape and size) of the resulting ANITs allowed us to systematically investigate the corresponding localized surface plasmon resonance (LSPR) coupling with varying nanoring arrangements and observe their single-particle surface enhanced Raman scattering (SERS). Surprisingly, individual ANITs exhibited an enormously large enhancement factor (∼109), which confirms their superior near-field focusing relative to other reported nanoparticles.

4.
Small ; 17(31): e2101262, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160907

RESUMO

Synthetic strategies of web-above-a-ring (WAR) and web-above-a-lens (WAL) nanostructures are reported. The WAR has a controllable gap between the nanoring core and a nanoweb with nanopores for the effective confinement of electromagnetic field in the nanogap and subsequent surface-enhanced Raman scattering (SERS) of Raman dyes inside the gap with high signal reproducibility, which are attributed to the generation of circular 3D hot zones along the rim of Pt@Au nanorings with wrapping nanoweb architecture. More specifically, Pt@Au nanorings are adopted as a plasmonic core for structural rigidity and built porous nanowebs above them through a controlled combination of galvanic exchange and the Kirkendall effect. Both nanoweb and nanolens structures are also formed on Pt@Au nanoring, which is WAL. structure. Remarkably, plasmonic hot zone, nanopores, and hot lens are formed inside a single WAL nanostructure, and these structural components are orchestrated to generate stronger SERS signals.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Ouro , Reprodutibilidade dos Testes , Análise Espectral Raman
5.
Nano Lett ; 20(10): 7774-7782, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32914988

RESUMO

In this Letter, a rational and stepwise method for the solution-phase synthesis of asymmetric Au split nanorings by adopting Au nanoprisms as a template has been demonstrated. The selective chemical etching of Au nanoprism tips activated the surface reactivity of edges and led to the selective deposition of Pt at the periphery of Au nanoplates. By controlling the total amount of Pt on the edges, different degrees of split Au@Pt nanorings were obtained; the subsequent Au coating around the Au@Pt scaffold eventually resulted in asymmetric Au hexagonal split nanorings. Their surface plasmonic features as a function of split degrees were investigated, including straight nanorods, bent nanorods, split nanorings, and full nanorings. The electrical field focusing using single-particle surface-enhanced Raman spectroscopy was evaluated under different polarization angles of the incident light for two different structures with the point gap and line gap between two arms.

6.
Nano Lett ; 20(6): 4362-4369, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32364741

RESUMO

Herein, plasmonic metal tripod nanoframes with three-fold symmetry were synthesized in a high yield (∼83%), and their electric field distribution and single-particle surface-enhanced Raman scattering (SERS) were studied. We realized such complex frame morphology by synthesizing analogous tripod nanoframes through multiple transformations. The precise control of the Au growth pattern led to uniform tripod nanoframes embedded with circle or line-shaped hot spots. The linear-shaped nanogaps ("Y"-shaped hot-zone) of the frame structures can strongly and efficiently confine the electric field, allowing for strong SERS signals. Coupled with a high synthetic yield of the targeted frame structure, strong and uniform SERS signals were obtained inside the nanoframe gaps. Remarkably, quite reproducible SERS signals were obtained with these structures-the SERS enhancement factors with an average value of 7.9 × 107 with a distribution of enhancement factors from 2.2 × 107 to 2.2 × 108 for 45 measured individual particles.

7.
J Am Chem Soc ; 142(36): 15412-15419, 2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32786770

RESUMO

Herein, we report the novel strategy for the synthesis of complex 3-dimensional (3D) nanostructures, mimicking the linker molecule-free 3D arrangement of six Au nanospheres at the vertices of octahedrons. We utilized 3D PtAu skeleton for the structural rigidity and deposited Au around the PtAu skeleton in a site-selective manner, allowing us to investigate their surface plasmonic coupling phenomenon and near-field enhancement as a function of sizes of nanospheres, which are directly related to the intrananogap distance and interior volume size. The resulting 3D Au hexamer structures with octahedral arrangement were realized through precise control of the Au growth pattern. The complex 3D Au hexamers were composed of six Au nanospheres connected by thin metal conductive bridges. The standard deviation of the metal conductive bridges and Au nanospheres was within ca. 10%, exhibiting a high degree of homogeneity and precise structural tunability. Interestingly, charge transfer among the six Au nanospheres occurred along the metal conductive bridges leading to surface plasmonic coupling between Au nanospheres. Accordingly, electric near fields were strongly and effectively focused at the vertices, intrananogap regions between Au nanospheres, and interior space, exhibiting well-resolved single-particle surface-enhanced Raman spectroscopy signals of absorbed analytes.

8.
J Am Chem Soc ; 142(28): 12341-12348, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530613

RESUMO

Silver double nanorings with circular intra-nanogaps between two nanorings of different diameters were synthesized without a linker molecule to confine an incident electromagnetic field in a single entity. We used on-demand, rational, and systematic multi-stepwise reactions consisting of (1) selective etching of gold, (2) rim-on deposition of platinum, (3) eccentric growth of gold, and (4) concentric growth of silver. The resulting silver double nanorings exhibited a high degree of homogeneity in both shape and size, with strongly coupled circular hot zones (or "hot halos", referring to the circular intra-nanogaps capable of focusing the near electromagnetic field) resulting from strong surface plasmon coupling between the inner and outer nanorings. Remarkably, these silver double nanorings exhibited strong, stable, and reproducible single-particle surface-enhanced Raman scattering signals without blinking. The signals appeared independently of polarization directions, which is a unique feature of a circular hot halo. The estimated enhancement factor was between 2 × 108 and 7 × 108. The measured limit of detection was 10-7 M in bulk concentration, and the signal appeared 570 s after sample exposure.

9.
Anal Chem ; 91(16): 10467-10476, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31265240

RESUMO

Surface-enhanced Raman scattering (SERS)-based sensing is promising in that it has potential to allow for highly sensitive, selective, and multiplexed detection and imaging. However, the controlled assembly and gap formation between plasmonic particles for generating strong SERS signals in a quantitative manner is highly challenging, especially on biodetection platforms, and particle-to-particle variation in the signal enhancement can vary by several orders of magnitude in a single batch, largely limiting the reliable use of SERS for practical sensing applications. Here, a hierarchic-nanocube-assembly based SERS (H-Cube-SERS) bioassay to controllably amplify the electromagnetic field between gold nanocubes (AuNCs) is developed. Based on this strategy, H-Cube-SERS assay allows for detecting target DNA with a wide dynamic range from 100 aM to 10 pM concentrations in a stable and reproducible manner. It is also found that the uniformly formed AuNCs with flat surfaces are much more suitable for highly sensitive, reliable, and quantitative biodetection assays due to faster DNA binding kinetics, sharper DNA melting transition, wider hot spot regions, and less dependence on light polarization direction than spherical Au nanoparticles with curved interfaces. This work paves the pathways to the quantitative and sensitive biodetection on a SERS platform and can be extended to other particle assembly systems.


Assuntos
Bioensaio , DNA/análise , Nanopartículas Metálicas/química , Nanopartículas/química , Análise Espectral Raman/métodos , Carbocianinas/química , Corantes Fluorescentes/química , Ouro/química , Limite de Detecção , Desnaturação de Ácido Nucleico , Reprodutibilidade dos Testes
10.
J Mov Disord ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39245082

RESUMO

Objective: Orthostatic hypotension (OH) is one of the most common autonomic dysfunctions in Parkinson's disease (PD) patients. However, many patients with OH are asymptomatic. Conversely, orthostatic dizziness (OD) is not always associated with OH. We investigated the effect of positional changes on cerebral perfusion in patients with PD and OH. Methods: We enrolled 43 patients, of whom 31 were PD patients and 11 were healthy controls (HC). All subjects underwent the following clinical assessments: OH Questionnaire, head-up tilt test (HUTT) with transcranial Doppler (TCD), near-infrared spectroscopy, measurement of the change in oxygenated hemoglobin (Δ Hboxy) during the squat-to-stand test (SST), measurement of the time derivative of total hemoglobin (DHbtot), and time taken to reach the peak (peak time, PT) of DHbtot after re-standing. Results: The mean flow velocity change (ΔMFV) in the TCD during the HUTT failed to differentiate between the PD-OH(+) and PD-OH(-) groups. The change in oxygenated hemoglobin Δ Hboxy was greater in the PD-OH(+) group, which persisted for 9 min until the end of the HUTT only in the left hemisphere. During SST, PT was significantly delayed in PD-OH (+) in the left hemisphere. Conclusion: Although TCD demonstrated no significant difference in ΔMFV, the parameters measured by NIRS, such as Δ Hboxy during HUTT and PT during SST, showed significantly increased Δ Hboxy or delayed PT in the left hemisphere of PD-OH(+). Positional changes have a detrimental effect on cerebral hemodynamics in patients with PD and OH, especially in the left hemisphere.

11.
J Vet Med Sci ; 2024 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-39401888

RESUMO

Staphylococcus spp. are one of the most predominant isolates in milk samples of dairy cows with mastitis worldwide. The aims of this study were to investigate the prevalence of bacterial pathogens in bovine mastitis milk samples in South Korea and the antimicrobial resistance profiles of staphylococcal isolates. In total, 1,245 strains were isolated from 1,260 mastitis quarter milk samples (with somatic cell counts ≥200,000 cells/mL) from 66 dairy farms between 2018 and 2022. The bacterial genus with the highest prevalence in bovine mastitis milk samples was Staphylococcus spp. (33.9%), followed by Streptococcus spp. (11.5%). S. aureus and non-aureus staphylococci (NAS) accounted for 11.0% and 89.0% of staphylococcal isolates, respectively. S. chromogenes was the most prevalent species among the 22 NAS species detected. S. aureus showed the highest resistance rates to penicillin (25.0%) and ampicillin (20.8%), whereas NAS showed the highest resistance rates to penicillin (18.3%), tetracycline (11.4%) and erythromycin (10.1%). Sixteen multidrug-resistant (MDR) isolates were only isolated from NAS, and the most commonly detected antimicrobial resistance gene in the 16 MDR isolates was mecA (75.0%), followed by tetK (62.5%), blaZ (50.0%), ermC (50.0%), and lnuA (43.8%). In conclusion, NAS were the most common isolates from mastitis milk in South Korea and MDR isolates carried a variety of antibiotic resistance genes. Our study suggests that continuous monitoring of the distribution and antimicrobial resistance in Staphylococcus spp., particularly NAS, is needed to improve the effectiveness of management and treatment strategies in dairy farms.

12.
Adv Mater ; 35(15): e2208250, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36680474

RESUMO

Metal nanostructures with a tunable plasmonic gap are useful for photonics, surface-enhanced spectroscopy, biosensing, and bioimaging applications. The use of these structures as chemical and biological sensing/imaging probes typically requires an ultra-precise synthesis of the targeted nanostructure in a high yield, with Raman dye-labeling and complex assay components and procedures. Here, a plasmonic nanostructure with tunable dual nanogaps, Au dual-gap nanodumbbells (AuDGNs), is designed and synthesized via the anisotropic adsorption of polyethyleneimine on Au nanorods to facilitate tip-selective Au growths on nanorod tips for forming mushroom-shaped dumbbell-head structures at both tips and results in dual gaps (intra-head and inter-head gaps) within a single particle. AuDGNs are synthesized in a high yield (>90%) while controlling the inter-head gap size, and the average surface-enhanced Raman scattering (SERS) enhancement factor (EF) value is 7.5 × 108 with a very narrow EF distribution from 1.5 × 108 to 1.5 × 109 for >90% of analyzed particles. Importantly, AuDGNs enable label-free on-particle SERS detection assays through the diffusion of target molecules into the intraparticle gap for different DNA sequences with varying ATGC combinations in a highly specific and sensitive manner without a need for Raman dyes.


Assuntos
Nanopartículas Metálicas , Nanoestruturas , Nanotubos , Nanopartículas Metálicas/química , Ouro/química , Nanoestruturas/química , DNA/química , Análise Espectral Raman/métodos
13.
Front Neurogenom ; 4: 1136362, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234497

RESUMO

Objective: The benefits of long-term consumption of green tea on the brain are well known. However, among many ingredients of green tea, the acute effects of (-)-gallocatechin gallate-rich green tea extract (GCG-GTE), have received comparatively less attention. Herein, we investigated the acute effects of oral ingestion of green tea with GCG-GTE, which contains close replicas of the ingredients of hot green tea, on task-dependent hemodynamics in the prefrontal cortex of healthy adult human brains. Methods: In this randomized, double-blind, placebo-controlled, parallel group trial, 35 healthy adults completed computerized cognitive tasks that demand activation of the prefrontal cortex at baseline and 1 h after consumption of placebo and 900 mg of GCG-GTE extract supplement. During cognitive testing, hemodynamic responses (change in HbO2 concentration) in the prefrontal cortex were assessed using functional near-infrared spectroscopy (fNIRS). Results: In fNIRS data, significant group x session interactions were found in the left (p = 0.035) and right (p = 0.036) dorsolateral prefrontal cortex (DLPFC). In behavioral data, despite the numerical increase in the GCG-GTE group and the numerical decrease in the Placebo group, no significant differences were observed in the cognitive performance measure between the groups. Conclusion: The result suggests a single dose of orally administered GCG-GTE can reduce DLPFC activation in healthy humans even with increased task demand. GCG-GTE is a promising functional material that can affect neural efficiency to lower mental workload during cognitively demanding tasks. However, further studies are needed to verify this.

14.
Am J Hypertens ; 36(7): 385-393, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-36905205

RESUMO

BACKGROUND: We aimed to evaluate dynamic alterations in cerebral total hemoglobin concentration (HbT) in individuals with orthostatic hypotension (OH) and orthostatic intolerance (OI) symptoms using a portable near-infrared spectroscopy (NIRS) system. METHODS: Participants comprised 238 individuals (mean age, 47.9 years) without a history of cardiovascular, neurodegenerative, or cerebrovascular diseases, including those with unexplained OI symptoms and healthy volunteers. Participants were categorized by the presence of OH based on the supine-to-stand blood pressure (BP) drop and OI symptoms using on OH questionnaires: classic OH (OH-BP), OH symptoms alone (OH-Sx), and control groups. Random case-control matching sets were constructed, resulting in 16 OH-BP and 69 OH-Sx-control sets. The time-derivative of HbT change in the prefrontal cortex during the squat-to-stand maneuver was measured using a portable NIRS system. RESULTS: There were no differences in demographics, baseline BP, and heart rate among matched sets. The peak time of maximum slope variation in HbT change, indicating the recovery rate and speed of cerebral blood volume (CBV) change, was significantly longer in OH-Sx and OH-BP groups than in the control group under transition to a standing position after squatting. In the OH-BP subgrouping, the peak time of maximum slope variation in HbT change was significantly longer only in OH-BP with OI symptoms, but did not differ between OH-BP without OI symptoms and controls. CONCLUSIONS: Our results suggest that OH and OI symptoms are associated with dynamic alterations in cerebral HbT. Regardless of the severity of the postural BP drop, OI symptoms are associated with prolonged CBV recovery.


Assuntos
Sistema Cardiovascular , Hipotensão Ortostática , Intolerância Ortostática , Humanos , Pessoa de Meia-Idade , Hipotensão Ortostática/diagnóstico , Pressão Sanguínea/fisiologia , Espectroscopia de Luz Próxima ao Infravermelho , Hemodinâmica
15.
ACS Nano ; 15(12): 19853-19863, 2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34807582

RESUMO

Direct photoluminescence (PL) from metal nanoparticles (NPs) without chemical dyes is promising for sensing and imaging applications since this offers a highly tunable platform for controlling and enhancing the signals in various conditions and does not suffer from photobleaching or photoblinking. It is, however, difficult to synthesize metal NPs with a high quantum yield (QY), particularly in the near-infrared (NIR) region where deep penetration and reduced light scattering are advantageous for bioimaging. Herein, we designed and synthesized Au-Ag long-body nanosnowman structures (LNSs), facilitated by polysorbate 20 (Tween 20). The DNA-engineered conductive junction between the head and body parts results in a charge transfer plasmon (CTP) mode in the NIR region. The junction morphology can be controlled by the DNA sequence on the Au core, and polythymine and polyadenine induced thick and thin junctions, respectively. We found that the LNSs with a thicker conductive junction generates the stronger CTP peak and PL signal than the LNSs with a thinner junction. The Au-Ag LNSs showed much higher intensities in both PL and QY than widely studied Au nanorods with similar localized surface plasmon resonance wavelengths, and notably, the LNSs displayed high photostability and robust, sustainable PL signals under continuous laser exposure for >15 h. Moreover, the PL emission from Au-Ag LNSs could be imaged in a deeper scattering medium than fluorescent silica NPs. Finally, highly robust PL-based cell images can be obtained using Au-Ag LNSs without significant signal change while repetitively imaging cells. The results offer the insights in plasmonic NIR probe design, and show that chemical dye-free LNSs can be a very promising candidate with a high QY and a robust, reliable NIR PL signal for NIR sensing and imaging applications.


Assuntos
Nanopartículas Metálicas , Nanotubos , Ouro , Polissorbatos , Ressonância de Plasmônio de Superfície
16.
Chem Sci ; 12(18): 6355-6361, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-34084434

RESUMO

We report a novel strategy for the synthesis of Pt@Au nanorings possessing near-field focusing capabilities at the center through which single-particle surface enhanced Raman scattering could be readily observed. We utilized Pt@Au nanorings as a light-absorber; the absorbed light could be focused at the center with the aid of a Au nanoporous structure. We synthesized the Au nanolens structure through a Galvanic exchange process between Au ions and Ag block at the inner domain of the Pt@Au nanoring. For this step, Ag was selectively pre-deposited at the inner domain of the Pt@Au nanorings through electrochemical potential-tuned growth control and different surface energies with regard to the inner and outer boundaries of the nanoring. Then, the central nanoporous architecture was fabricated through the Galvanic exchange of sacrificial Ag with Au ions leading to the resulting Au nanoring with a Au nanoporous structure at the center. We monitored the shape-transformation by observing their corresponding localized surface plasmon resonance (LSPR) profiles. By varying the rim thickness of the starting Pt@Au nanorings, the inner diameter of the nanolens was accordingly tuned to maximize near-field focusing, which enabled us to obtain the reproducible and light-polarization independent measurements of single-particle SERS. Through theoretical simulation, the near-field electromagnetic field focusing capability was visualized and confirmed through single-particle SERS measurement showing an enhancement factor of 1.9 × 108 to 1.0 × 109.

17.
Sci Rep ; 11(1): 8568, 2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33883666

RESUMO

Inadequate cerebral perfusion is a risk factor for cerebral ischemia in patients with large artery steno-occlusion. We investigated whether prefrontal oxyhemoglobin oscillation (ΔHbO2, 0.6-2 Hz) was associated with decreased vascular reserve in patients with steno-occlusion in the large anterior circulation arteries. Thirty-six patients with steno-occlusion in the anterior circulation arteries (anterior cerebral artery, middle cerebral artery, and internal carotid artery) were included and compared to thirty-six control subjects. Patients were categorized into two groups (deteriorated vascular reserve vs. preserved vascular reserve) based on the results of Diamox single- photon emission computed tomography imaging. HbO2 data were collected using functional near-infrared spectroscopy. The slope of ΔHbO2 and the ipsilateral/contralateral slope ratio of ΔHbO2 were analyzed. Among the included patients (n = 36), 25 (69.4%) had deteriorated vascular reserve. Patients with deteriorated vascular reserve had a significantly higher average slope of ΔHbO2 on the ipsilateral side (5.01 ± 2.14) and a higher ipsilateral/contralateral ratio (1.44 ± 0.62) compared to those with preserved vascular reserve (3.17 ± 1.36, P = 0.014; 0.93 ± 0.33, P = 0.016, respectively) or the controls (3.82 ± 1.69, P = 0.019; 0.94 ± 0.29, P = 0.001). The ipsilateral/contralateral ΔHbO2 ratio could be used as a surrogate for vascular reserve in patients with severe steno-occlusion in the anterior circulation arteries.


Assuntos
Arteriopatias Oclusivas/metabolismo , Estenose das Carótidas/metabolismo , Circulação Cerebrovascular , Oxiemoglobinas/metabolismo , Idoso , Artéria Cerebral Anterior/fisiopatologia , Arteriopatias Oclusivas/fisiopatologia , Artéria Carótida Interna/fisiopatologia , Estenose das Carótidas/fisiopatologia , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Artéria Cerebral Média/fisiopatologia , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Computadorizada de Emissão de Fóton Único
18.
Adv Mater ; 33(46): e2006966, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34013617

RESUMO

Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.

19.
Front Vet Sci ; 8: 673820, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422940

RESUMO

In South Korea, domestic cattle, pigs, and goats were subjected to mandatory foot-and-mouth disease (FMD) vaccination and year-round serosurveillance since 2011. In 2020, approximately USD 95 million was spent solely for FMD vaccine purchase for 59 million livestock, and 1.25 million samples were tested to estimate the population immunity and demonstrate the absence of virus circulation. As the FMD vaccination program was revised in 2018, the post-vaccination monitoring (PVM) was designed to evaluate the effectiveness of the vaccine program of three vaccines approved for routine use. To this end, monitoring post-vaccination immunity has been conducted by collecting 35,626 serum samples at 28 days post-vaccination following regular national vaccinations, which were carried out in April and in October in 2020. The design of the serological test for PVM was specially targeted at particular livestock groups, including dairy cattle, goats, and beef cattle aged 6-12 months, which were generally estimated to have a low expected seroprevalence. The risk factors had also been identified, considering the increased likelihood of infection in a particular location, herd size, and husbandry system applied in a targeted sample collection. Serum sample collection and SP-O and NSP antibody tests were performed by local veterinary laboratories using commercially available ELISAs. The current FMD vaccination program, which was performed twice a year following the regimen of primary vaccination and boost, resulted in over 80% population immunity. The seroprevalence monitored after the vaccination in fall was higher than the one studied in spring except in pigs. It was demonstrated that the seroprevalence of risk-based targeted samples ranged from 93.8 to 100% in cattle, 63.2 to 100% in pigs, and 20.0 to 100% in goats. Of note is the area near the North Korean borders which showed a relatively low seroprevalence among the targeted regions, and no NSP sero-positive reactor was detected in this region. When subpopulation immunity at the individual level was assessed, the seroprevalence in young cattle stock was slightly lower (95.8%) than that of adults (98.4%). In conclusion, the FMD vaccination campaign has been successfully implemented in Korea, and the PVM can be a supplementary program for massive routine surveillance in terms of providing timely information needed both to estimate population immunity and to properly target "risk-based surveillance."

20.
J Phys Chem Lett ; 11(19): 8358-8364, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32956585

RESUMO

We developed a synthetic strategy to form cyclodextrin-based intrananogap particles (CIPs) with a well-defined ∼1 nm interior gap in a high yield (∼97%), and were able to incorporate 10 different Raman dyes inside the gap using the cyclodextrin-based host-guest chemistry, leading to strong, reproducible, and highly multiplexable surface-enhanced Raman scattering (SERS) signals. The average SERS enhancement factor (EF) for CIPs was 3.0 × 109 with a very narrow distribution of the EFs that range from 9.5 × 108 to 9.5 × 109 for ∼95% of the measured particles. Remarkably, 10 different Raman dyes can be loaded within the nanogap of CIPs, and 6 different Raman dye-loaded CIPs with little spectral overlaps were distinctly detected for cancer cell imaging applications with a single excitation source. Our synthetic strategy provides new platforms in precisely forming plasmonic nanogap structures with all key features for widespread use of SERS including strong signal intensity, reliability in quantification of signal and multiplexing capability.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa