Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
BMC Emerg Med ; 23(1): 57, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248552

RESUMO

BACKGROUND: Ketamine and etomidate are commonly used as sedatives in rapid sequence intubation (RSI). However, there is no consensus on which agent should be favored when treating patients with trauma. This study aimed to compare the effects of ketamine and etomidate on first-pass success and outcomes of patients with trauma after RSI-facilitated emergency intubation. METHODS: We retrospectively reviewed 944 patients who underwent endotracheal intubation in a trauma bay at a Korean level 1 trauma center between January 2019 and December 2021. Outcomes were compared between the ketamine and etomidate groups after propensity score matching to balance the overall distribution between the two groups. RESULTS: In total, 620 patients were included in the analysis, of which 118 (19.9%) were administered ketamine and the remaining 502 (80.1%) were treated with etomidate. Patients in the ketamine group showed a significantly faster initial heart rate (105.0 ± 25.7 vs. 97.7 ± 23.6, p = 0.003), were more hypotensive (114.2 ± 32.8 mmHg vs. 139.3 ± 34.4 mmHg, p < 0.001), and had higher Glasgow Coma Scale (9.1 ± 4.0 vs. 8.2 ± 4.0, p = 0.031) and Injury Severity Score (32.5 ± 16.3 vs. 27.0 ± 13.3, p < 0.001) than those in the etomidate group. There were no significant differences in the first-pass success rate (90.7% vs. 90.1%, p > 0.999), final mortality (16.1% vs. 20.6, p = 0.348), length of stay in the intensive care unit (days) (8 [4, 15] (Interquartile range)), vs. 10 [4, 21], p = 0.998), ventilator days (4 [2, 10] vs. 5 [2, 13], p = 0.735), and hospital stay (days) (24.5 [10.25, 38.5] vs. 22 [8, 40], p = 0.322) in the 1:3 propensity score matching analysis. CONCLUSION: In this retrospective study of trauma resuscitation, those receiving intubation with ketamine had greater hemodynamic instability than those receiving etomidate. However, there was no significant difference in clinical outcomes between patients sedated with ketamine and those treated with etomidate.


Assuntos
Etomidato , Ketamina , Humanos , Etomidato/uso terapêutico , Ketamina/uso terapêutico , Estudos Retrospectivos , Anestésicos Intravenosos/efeitos adversos , Indução e Intubação de Sequência Rápida , Centros de Traumatologia , Intubação Intratraqueal , República da Coreia
2.
Int J Mol Sci ; 24(20)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37895113

RESUMO

This study aimed to investigate the effects of C-peptide on C2C12 myotubes and a mouse model. Both in vitro and in vivo experiments were conducted to elucidate the role of C-peptide in muscle atrophy. Various concentrations (0, 0.01, 0.1, 1, 10, and 100 nM) of C-peptide were used on the differentiated C2C12 myotubes with or without dexamethasone (DEX). C57BL/6J mice were administered with C-peptide and DEX for 8 days, followed by C-peptide treatment for 12 days. Compared to the DEX group, C-peptide increased the fusion and differentiation indices and suppressed atrophic factor expression in C2C12 myotubes. However, 100 nM C-peptide decreased the fusion and differentiation indices and increased atrophic factor expression regardless of DEX treatment. In C57BL/6J mice, DEX + C-peptide co-treatment significantly attenuated the body and muscle weight loss and improved the grip strength and cross-sectional area of the gastrocnemius (Gas) and quadriceps (Quad) muscles. C-peptide downregulated the mRNA and protein levels of muscle degradation-related markers, particularly Atrogin-1, in Gas and Quad muscles. This study underscores the potential of C-peptides in mitigating muscle weight reduction and preserving muscle function during muscle atrophy via molecular regulation. In addition, the work presents basic data for future studies on the effect of C-peptide on diabetic muscular dystrophy.


Assuntos
Dexametasona , Atrofia Muscular , Camundongos , Animais , Peptídeo C/metabolismo , Dexametasona/uso terapêutico , Camundongos Endogâmicos C57BL , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo
3.
Angew Chem Int Ed Engl ; 59(34): 14628-14638, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32430981

RESUMO

We describe a small lipid nanoparticle (SLNP)-based nanovaccine platform and a new combination treatment regimen. Tumor antigen-displaying, CpG adjuvant-embedded SLNPs (OVAPEP -SLNP@CpG) were prepared from biocompatible phospholipids and a cationic cholesterol derivative. The resulting nanovaccine showed highly potent antitumor efficacy in both prophylactic and therapeutic E.G7 tumor models. However, this vaccine induced T cell exhaustion by elevating PD-L1 expression, leading to tumor recurrence. Thus, the nanovaccine was combined with simultaneous anti-PD-1 antibody treatment, but the therapeutic efficacy of this regimen was comparable to that of the nanovaccine alone. Finally, mice that showed a good therapeutic response after the first cycle of immunization with the nanovaccine underwent a second cycle together with anti-PD-1 therapy, resulting in suppression of tumor relapse. This suggests that the antitumor efficacy of combinations of nanovaccines with immune checkpoint blockade therapy is dependent on treatment sequence and the timing of each modality.


Assuntos
Vacinas Anticâncer/administração & dosagem , Proliferação de Células , Inibidores de Checkpoint Imunológico/administração & dosagem , Nanotecnologia , Neoplasias/terapia , Animais , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Neoplasias/patologia
4.
Proc Natl Acad Sci U S A ; 113(3): 710-5, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26715758

RESUMO

Despite the appreciable success of synthetic nanomaterials for targeted cancer therapy in preclinical studies, technical challenges involving their large-scale, cost-effective production and intrinsic toxicity associated with the materials, as well as their inability to penetrate tumor tissues deeply, limit their clinical translation. Here, we describe biologically derived nanocarriers developed from a bioengineered yeast strain that may overcome such impediments. The budding yeast Saccharomyces cerevisiae was genetically engineered to produce nanosized vacuoles displaying human epidermal growth factor receptor 2 (HER2)-specific affibody for active targeting. These nanosized vacuoles efficiently loaded the anticancer drug doxorubicin (Dox) and were effectively endocytosed by cultured cancer cells. Their cancer-targeting ability, along with their unique endomembrane compositions, significantly enhanced drug penetration in multicellular cultures and improved drug distribution in a tumor xenograft. Furthermore, Dox-loaded vacuoles successfully prevented tumor growth without eliciting any prolonged immune responses. The current study provides a platform technology for generating cancer-specific, tissue-penetrating, safe, and scalable biological nanoparticles for targeted cancer therapy.


Assuntos
Bioengenharia , Terapia de Alvo Molecular , Especificidade de Órgãos , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Animais , Antineoplásicos/sangue , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Doxorrubicina/sangue , Doxorrubicina/farmacocinética , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Cinética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Células RAW 264.7 , Receptor ErbB-2/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Angew Chem Int Ed Engl ; 58(7): 2005-2010, 2019 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-30600870

RESUMO

Peptide-based therapeutics have suffered from a short plasma half-life. On the other hand, antibodies suffer from poor penetration into solid tumors owing to their large size. Herein, we present a new molecular form, namely a hybrid complex between a hapten-labeled bispecific peptide and an anti-hapten antibody ("HyPEP-body"), that may be able to overcome the aforementioned limitation. The bispecific peptide containing a cotinine tag was synthesized by linking a peptide specific to fibronectin extra domain B (EDB) and a peptide able to bind and inhibit vascular endothelial growth factor (VEGF), yielding cot-biPEPEDB-VEGF . Simple mixing of cot-biPEPEDB-VEGF and anti-cotinine antibody (Abcot ) yielded the hybrid complex, HyPEPEDB-VEGF . HyPEPEDB-VEGF retained the characteristics of the included peptides, and showed improved pharmacokinetic behavior. Moreover, HyPEPEDB-VEGF showed tumor growth inhibition with excellent tumor accumulation and penetration. These findings suggest that the hybrid platform described here offers a solution for most peptide therapeutics that suffer from a short circulation half-life in blood.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antineoplásicos/farmacologia , Peptídeos/farmacologia , Animais , Anticorpos Biespecíficos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Células PC-3 , Peptídeos/química , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Nanotechnology ; 27(48): 48LT01, 2016 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-27804918

RESUMO

Self-assembled nanoparticles (NPs) have been intensively utilized as cancer drug delivery carriers because hydrophobic anticancer drugs may be efficiently loaded into the particle cores. In this study, we synthesized and evaluated the therapeutic index of self-assembled NPs chemically conjugated to a fibronectin extra domain B-specific peptide (APTEDB) and an anticancer agent SN38. The APTEDB-SN38 formed self-assembled structures with a diameter of 58 ± 3 nm in an aqueous solution and displayed excellent drug loading, solubility, and stability properties. A pharmacokinetic study revealed that the blood circulation half-life of SN38 following injection of the APTEDB-SN38 NPs was markedly higher than that of the small molecule CPT-11. The APTEDB-SN38 NPs delivered SN38 to tumor sites by both passive and active targeting. Finally, the APTEDB-SN38 NPs exhibited potent antitumor activities and low toxicities against EDB-expressing tumors (LLC, U87MG) in mice. This system merits further preclinical and clinical investigations for SN38 delivery.


Assuntos
Nanopartículas , Animais , Antineoplásicos , Linhagem Celular Tumoral , Portadores de Fármacos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias
7.
J Korean Med Sci ; 29(7): 985-91, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25045232

RESUMO

Stroke in young adults has been known to show a lower incidence and a better prognosis. Only a few studies have examined the epidemiology and outcomes of ischemic stroke in young adults and compared them with the elderly in Korean population. All consecutive patients with ischemic stroke visiting 29 participating emergency departments were enrolled from November 2007 to October 2009. Patients with less than 15 yr of age and unknown information on age and confirmed diagnosis were excluded. We categorized the patients into young adults (15 to 45 yr) and elderly (46 yr and older) groups. Of 39,156 enrolled all stroke patients, 25,818 with ischemic stroke were included and analyzed (young adult; n=1,431, 5.5%). Young adult patients showed lower prevalence of most chronic diseases but significantly higher prevalence in exercise, current smoking, and alcohol consumption. Hospital mortality was significantly lower in young adults than elderly (1.1% vs. 3.1%, P<0.001). Higher number of patients in elderly group (68.1%) showed worsening change of modified Rankin Scale than young adults (65.2%). Young adults ischemic stroke showed favorable hospital outcomes than the elderly in Korean population.


Assuntos
Serviços Médicos de Emergência , Avaliação de Resultados em Cuidados de Saúde , Acidente Vascular Cerebral/diagnóstico , Adolescente , Adulto , Fatores Etários , Idoso , Doença Crônica , Demografia , Avaliação da Deficiência , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Prognóstico , República da Coreia/epidemiologia , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/mortalidade , Adulto Jovem
8.
Adv Sci (Weinh) ; : e2403615, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049735

RESUMO

Persistent or recurrent bleeding from microvessels inaccessible for direct endovascular intervention is a major problem in medicine today. Here, an innovative catheter-directed liquid embolic (P-LE) is bioengineered for rapid microvessel embolization to treat small vessel hemorrhage. Tested in rodent, porcine, and canine animal models under normal and coagulopathic conditions, P-LE outperformed clinically used embolic materials in both survival and non-survival experiments, effectively occluding vessels as small as 40 microns with no signs of recanalization. P-LE occlusion is independent of the coagulation cascade, and its resistance to displacement is ≈ 8 times greater than systolic blood pressure. P-LE is also found to be biocompatible and x-ray visible and does not require polymerization or a chemical reaction to embolize. To simulate the clinical scenario, acute microvascular hemorrhage is created in the pig kidney, liver, or stomach; these are successfully treated with P-LE achieving immediate hemostasis. Furthermore, P-LE is found to be bactericidal to highly resistant patient-derived bacteria, suggesting that P-LE may also protect against infectious complications that may occur following embolization procedures. P-LE is safe, easy to use, and effective in treating -microvessel hemorrhage.

9.
Adv Mater ; : e2405805, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39148150

RESUMO

Central venous catheters are among the most used medical devices in hospitals today. Despite advances in modern medicine, catheter infections remain prevalent, causing significant morbidity and mortality worldwide. Here, SteriGel is reported, which is a multifunctional hydrogel engineered to prevent and treat central line-associated bloodstream infections (CLABSI). The mechanical properties of SteriGel are optimized to ensure appropriate gelation kinetics, bio-adhesiveness, stretchability, and recoverability to promote durability upon application and to provide persistent protection against infection. In vitro assays demonstrated that SteriGel exhibits long-term antimicrobial efficacy and has bactericidal effects against highly resistant patient-derived pathogens known to be frequently associated with CLABSI. SteriGel outperformed Biopatch, which is a clinically used device for CLABSI, in ex vivo cadaver studies that simulate clinical scenarios. Furthermore, SteriGel has biocompatible, pro-healing, and anti-inflammatory properties in vitro and in a rat subcutaneous injection model, suggesting a potential synergistic effect in the prevention and treatment of CLABSI. SteriGel is a multifunctional adherent biomaterial with potent antimicrobial effects for sustained sterility while promoting healing of the catheter incision site to protect against infection.

10.
Adv Mater ; 36(29): e2402570, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678378

RESUMO

Embolic materials currently in use for portal vein embolization (PVE) do not treat the tumor, which poses a risk for tumor progression during the interval between PVE and surgical resection. Here, is developed an ionic-liquid-based embolic material (LEAD) for portal vein embolization, liver ablation, and drug delivery. LEAD is optimized and characterized for diffusivity, X-ray visibility, and cytotoxicity. In the porcine renal embolization model, LEAD delivered from the main renal artery reached vasculature down to 10 microns with uniform tissue ablation and delivery of small and large therapeutics. In non-survival and survival porcine experiments, successful PVE is achieved in minutes, leading to the expected chemical segmentectomy, and delivery of a large protein drug (i.e., Nivolumab) with LEAD. In cholangiocarcinoma mouse tumor models and in ex vivo human tumors, LEAD consistently achieved an effective ablation and wide drug distribution. Furthermore, various strains of drug-resistant patient-derived bacteria showed significant susceptibility to LEAD, suggesting that LEAD may also prevent infectious complications resulting from tissue ablation. With its capabilities to embolize, ablate, and deliver therapeutics, ease of use, and a high safety profile demonstrated in animal studies, LEAD offers a potential alternative to tumor ablation with or without PVE for FLR growth.


Assuntos
Embolização Terapêutica , Líquidos Iônicos , Veia Porta , Animais , Camundongos , Humanos , Embolização Terapêutica/métodos , Suínos , Líquidos Iônicos/química , Linhagem Celular Tumoral , Catéteres , Ductos Biliares , Neoplasias dos Ductos Biliares/patologia
11.
Adv Mater ; 36(32): e2310856, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38771628

RESUMO

Tissue ablation techniques have emerged as a critical component of modern medical practice and biomedical research, offering versatile solutions for treating various diseases and disorders. Percutaneous ablation is minimally invasive and offers numerous advantages over traditional surgery, such as shorter recovery times, reduced hospital stays, and decreased healthcare costs. Intra-procedural imaging during ablation also allows precise visualization of the treated tissue while minimizing injury to the surrounding normal tissues, reducing the risk of complications. Here, the mechanisms of tissue ablation and innovative energy delivery systems are explored, highlighting recent advancements that have reshaped the landscape of clinical practice. Current clinical challenges related to tissue ablation are also discussed, underlining unmet clinical needs for more advanced material-based approaches to improve the delivery of energy and pharmacology-based therapeutics.


Assuntos
Técnicas de Ablação , Humanos , Animais , Técnicas de Ablação/métodos
12.
Sci Transl Med ; 16(754): eadn7982, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959326

RESUMO

Benign prostatic hyperplasia and prostate cancer are often associated with lower urinary tract symptoms, which can severely affect patient quality of life. To address this challenge, we developed and optimized an injectable compound, prostate ablation and drug delivery agent (PADA), for percutaneous prostate tissue ablation and concurrently delivered therapeutic agents. PADA is an ionic liquid composed of choline and geranic acid mixed with anticancer therapeutics and a contrast agent. The PADA formulation was optimized for mechanical properties compatible with hand injection, diffusion capability, cytotoxicity against prostate cells, and visibility of an x-ray contrast agent. PADA also exhibited antibacterial properties against highly resistant clinically isolated bacteria in vitro. Ultrasound-guided injection, dispersion of PADA in the tissue, and tissue ablation were tested ex vivo in healthy porcine, canine, and human prostates and in freshly resected human tumors. In vivo testing was conducted in a murine subcutaneous tumor model and in the canine prostate. In all models, PADA decreased the number of viable cells in the region of dispersion and supported the delivery of nivolumab throughout a portion of the tissue. In canine survival experiments, there were no adverse events and no impact on urination. The injection approach was easy to perform under ultrasound guidance and produced a localized effect with a favorable safety profile. These findings suggest that PADA is a promising therapeutic prostate ablation strategy to treat lower urinary tract symptoms.


Assuntos
Sistemas de Liberação de Medicamentos , Líquidos Iônicos , Próstata , Animais , Masculino , Cães , Humanos , Próstata/efeitos dos fármacos , Próstata/patologia , Líquidos Iônicos/química , Camundongos , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Suínos , Injeções , Linhagem Celular Tumoral , Técnicas de Ablação/métodos
13.
Bioact Mater ; 34: 164-180, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343773

RESUMO

Extracellular matrix (ECM) undergoes dynamic inflation that dynamically changes ligand nanospacing but has not been explored. Here we utilize ECM-mimicking photocontrolled supramolecular ligand-tunable Azo+ self-assembly composed of azobenzene derivatives (Azo+) stacked via cation-π interactions and stabilized with RGD ligand-bearing poly(acrylic acid). Near-infrared-upconverted-ultraviolet light induces cis-Azo+-mediated inflation that suppresses cation-π interactions, thereby inflating liganded self-assembly. This inflation increases nanospacing of "closely nanospaced" ligands from 1.8 nm to 2.6 nm and the surface area of liganded self-assembly that facilitate stem cell adhesion, mechanosensing, and differentiation both in vitro and in vivo, including the release of loaded molecules by destabilizing water bridges and hydrogen bonds between the Azo+ molecules and loaded molecules. Conversely, visible light induces trans-Azo+ formation that facilitates cation-π interactions, thereby deflating self-assembly with "closely nanospaced" ligands that inhibits stem cell adhesion, mechanosensing, and differentiation. In stark contrast, when ligand nanospacing increases from 8.7 nm to 12.2 nm via the inflation of self-assembly, the surface area of "distantly nanospaced" ligands increases, thereby suppressing stem cell adhesion, mechanosensing, and differentiation. Long-term in vivo stability of self-assembly via real-time tracking and upconversion are verified. This tuning of ligand nanospacing can unravel dynamic ligand-cell interactions for stem cell-regulated tissue regeneration.

14.
Biomaterials ; 296: 122075, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931103

RESUMO

Skin-interfaced electronics (skintronics) have received considerable attention due to their thinness, skin-like mechanical softness, excellent conformability, and multifunctional integration. Current advancements in skintronics have enabled health monitoring and digital medicine. Particularly, skintronics offer a personalized platform for early-stage disease diagnosis and treatment. In this comprehensive review, we discuss (1) the state-of-the-art skintronic devices, (2) material selections and platform considerations of future skintronics toward intelligent healthcare, (3) device fabrication and system integrations of skintronics, (4) an overview of the skintronic platform for personalized healthcare applications, including biosensing as well as wound healing, sleep monitoring, the assessment of SARS-CoV-2, and the augmented reality-/virtual reality-enhanced human-machine interfaces, and (5) current challenges and future opportunities of skintronics and their potentials in clinical translation and commercialization. The field of skintronics will not only minimize physical and physiological mismatches with the skin but also shift the paradigm in intelligent and personalized healthcare and offer unprecedented promise to revolutionize conventional medical practices.


Assuntos
COVID-19 , Dispositivos Eletrônicos Vestíveis , Humanos , SARS-CoV-2 , Eletrônica , Atenção à Saúde
15.
Biofabrication ; 15(4)2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348491

RESUMO

Three-dimensional (3D)in vitrotumor models that can capture the pathophysiology of human tumors are essential for cancer biology and drug development. However, simulating the tumor microenvironment is still challenging because it consists of a heterogeneous mixture of various cellular components and biological factors. In this regard, current extracellular matrix (ECM)-mimicking hydrogels used in tumor tissue engineering lack physical interactions that can keep biological factors released by encapsulated cells within the hydrogel and improve paracrine interactions. Here, we developed a nanoengineered ion-covalent cross-linkable bioink to construct 3D bioprinted organotypic tumor models. The bioink was designed to implement the tumor ECM by creating an interpenetrating network composed of gelatin methacryloyl (GelMA), a light cross-linkable polymer, and synthetic nanosilicate (Laponite) that exhibits a unique ionic charge to improve retention of biological factors released by the encapsulated cells and assist in paracrine signals. The physical properties related to printability were evaluated to analyze the effect of Laponite hydrogel on bioink. Low GelMA (5%) with high Laponite (2.5%-3.5%) composite hydrogels and high GelMA (10%) with low Laponite (1.0%-2.0%) composite hydrogels showed acceptable mechanical properties for 3D printing. However, a low GelMA composite hydrogel with a high Laponite content could not provide acceptable cell viability. Fluorescent cell labeling studies showed that as the proportion of Laponite increased, the cells became more aggregated to form larger 3D tumor structures. Reverse transcription-polymerase chain reaction (RT-qPCR) and western blot experiments showed that an increase in the Laponite ratio induces upregulation of growth factor and tissue remodeling-related genes and proteins in tumor cells. In contrast, cell cycle and proliferation-related genes were downregulated. On the other hand, concerning fibroblasts, the increase in the Laponite ratio indicated an overall upregulation of the mesenchymal phenotype-related genes and proteins. Our study may provide a rationale for using Laponite-based hydrogels in 3D cancer modeling.


Assuntos
Bioimpressão , Neoplasias , Humanos , Alicerces Teciduais/química , Bioimpressão/métodos , Engenharia Tecidual/métodos , Gelatina/química , Impressão Tridimensional , Hidrogéis/farmacologia , Hidrogéis/química , Fatores Biológicos , Microambiente Tumoral
16.
J Korean Med Sci ; 27(8): 934-8, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22876062

RESUMO

The goal of this study was to determine how much the formation of tetanus antibody is influenced after a single injection of tetanus vaccine (Td) and the simultaneous injection of tetanus vaccine with tetanus immunoglobulin (TIG). All of the healthy adult volunteers were divided into two groups: group 1 (Td only) and group 2 (Td plus TIG). Two hundred thirty seven volunteers were enrolled. When the baseline antibody titer, gender and age were adjusted, the geometric mean titers (GMTs) of the tetanus antibody (group 1 vs group 2) was 0.8438 IU/mL vs 0.5684 IU/mL at 4 weeks (P = 0.002), 0.4074 IU/mL vs 0.3217 IU/mL at 6 months (P = 0.072) and 0.3398 IU/mL vs 0.2761 IU/mL at 12 months (P = 0.140) after injection, respectively. The formation of tetanus antibody after tetanus vaccination is not influenced by TIG at the late period and in adults below the age of 50 yr, but there are significant differences between the two groups at the early period of 4 weeks after vaccination and for the patients over 60 yr.


Assuntos
Imunoglobulinas/administração & dosagem , Toxoide Tetânico/administração & dosagem , Tétano/prevenção & controle , Adulto , Fatores Etários , Anticorpos Antibacterianos/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores Sexuais , Tétano/imunologia , Toxoide Tetânico/imunologia , Fatores de Tempo
17.
Front Endocrinol (Lausanne) ; 13: 900791, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35707463

RESUMO

Periostin is a matricellular protein that is ubiquitously expressed in normal human tissues and is involved in pathologic mechanism of chronic inflammatory and fibrotic disease. In this study we investigate periostin in the pathogenesis of Graves' orbitopathy (GO) using human orbital adipose tissue obtained from surgery and primary cultured orbital fibroblasts in vitro. POSTN (gene encoding periostin) expression in Graves' orbital tissues and healthy control tissues was studied, and the role of periostin in GO pathologic mechanism was examined through small-interfering RNA (siRNA)-mediated silencing. POSTN gene expression was significantly higher in Graves' orbital tissues than healthy control tissues in real-time PCR results, and immunohistochemical staining revealed higher expression of periostin in Graves' orbital tissues than normal tissues. Silencing periostin using siRNA transfection significantly attenuated TGF-ß-induced profibrotic protein production and phosphorylated p38 and SMAD protein production. Knockdown of periostin inhibited interleukin-1 ß -induced proinflammatory cytokines production as well as phosphorylation of NF-κB and Ak signaling protein. Adipocyte differentiation was also suppressed in periostin-targeting siRNA transfected GO cells. We hypothesize that periostin contributes to the pathogenic process of inflammation, fibrosis and adipogenesis of GO. Our study provides in vitro evidence that periostin may be a novel potential therapeutic target for the treatment of GO.


Assuntos
Oftalmopatia de Graves , Adipogenia , Citocinas/metabolismo , Fibroblastos/metabolismo , Fibrose , Oftalmopatia de Graves/tratamento farmacológico , Humanos , Inflamação/metabolismo , RNA Interferente Pequeno/genética
18.
Adv Mater ; 34(30): e2203993, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35639412

RESUMO

Cancer-targeting ligands used for nanomedicines have been limited mostly to antibodies, peptides, aptamers, and small molecules thus far. Here, a library of glycocalyx-mimicking nanoparticles as a platform to enable screening and identification of cancer-targeting nanomedicines is reported. Specifically, a library of 31 artificial glycopolymers composed of either homogeneous or heterogeneous display of five different sugar moieties (ß-glucose, ß-galactose, α-mannose, ß-N-acetyl glucosamine, and ß-N-acetyl galactosamine) is converted to a library of glyconanoparticles (GlyNPs). GlyNPs optimal for targeting CT26, DU145, A549, and PC3 tumors are systematically screened and identified. The cypate-conjugated GlyNP displaying α-mannose and ß-N-acetyl glucosamine show selective targeting and potent photothermal therapeutic efficacy against A549 human lung tumors. The docetaxel-contained GlyNP displaying ß-glucose, ß-galactose, and α-mannose demonstrate targeted chemotherapy against DU145 human prostate tumors. The results presented herein collectively demonstrate that the GlyNP library is a versatile platform enabling the identification of cancer-targeting glyconanoparticles and suggest its potential applicability for targeting various diseased cells beyond cancer.


Assuntos
Manose , Neoplasias , Detecção Precoce de Câncer , Galactose , Glucosamina , Glucose , Humanos , Masculino , Neoplasias/diagnóstico , Neoplasias/tratamento farmacológico
19.
Adv Mater ; 34(49): e2205498, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36268986

RESUMO

Dynamic manipulation of supramolecular self-assembled structures is achieved irreversibly or under non-physiological conditions, thereby limiting their biomedical, environmental, and catalysis applicability. In this study, microgels composed of azobenzene derivatives stacked via π-cation and π-π interactions are developed that are electrostatically stabilized with Arg-Gly-Asp (RGD)-bearing anionic polymers. Lateral swelling of RGD-bearing microgels occurs via cis-azobenzene formation mediated by near-infrared-light-upconverted ultraviolet light, which disrupts intermolecular interactions on the visible-light-absorbing upconversion-nanoparticle-coated materials. Real-time imaging and molecular dynamics simulations demonstrate the deswelling of RGD-bearing microgels via visible-light-mediated trans-azobenzene formation. Near-infrared light can induce in situ swelling of RGD-bearing microgels to increase RGD availability and trigger release of loaded interleukin-4, which facilitates the adhesion structure assembly linked with pro-regenerative polarization of host macrophages. In contrast, visible light can induce deswelling of RGD-bearing microgels to decrease RGD availability that suppresses macrophage adhesion that yields pro-inflammatory polarization. These microgels exhibit high stability and non-toxicity. Versatile use of ligands and protein delivery can offer cytocompatible and photoswitchable manipulability of diverse host cells.


Assuntos
Microgéis , Macrófagos
20.
J Control Release ; 332: 160-170, 2021 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-33631224

RESUMO

Activation of signal transducer and activator of transcription 3 (STAT3) under conditions of inflammation plays a crucial role in the pathogenesis of life-threatening pulmonary fibrosis (PF), initiating pro-fibrotic signaling following its phosphorylation. While there have been attempts to interfere with STAT3 activation and associated signaling as a strategy for ameliorating PF, potent inhibitors with minimal systemic toxicity have yet to be developed. Here, we assessed the in vitro and in vivo therapeutic effectiveness of a cell-permeable peptide inhibitor of STAT3 phosphorylation, designated APTstat3-9R, for ameliorating the indications of pulmonary fibrosis. Our results demonstrate that APTstat3-9R formulated with biomimetic disc-shaped lipid nanoparticles (DLNPs) markedly enhanced the penetration of pulmonary surfactant barrier and alleviated clinical symptoms of PF while causing negligible systemic cytotoxicity. Taken together, our findings suggest that biomimetic lipid nanoparticle-assisted pulmonary delivery of APTstat3-9R may be a feasible therapeutic option for PF in the clinic, and could be applied to treat other fibrotic diseases.


Assuntos
Fibrose Pulmonar , Fator de Transcrição STAT3 , Biomimética , Humanos , Lipídeos , Pulmão/metabolismo , Peptídeos , Fibrose Pulmonar/tratamento farmacológico , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa