Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Small ; : e2402341, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795003

RESUMO

Poly(3,4-ethylenedioxythiophene) (PEDOT), particularly in its complex form with poly(styrene sulfonate) (PEDOT:PSS), stands out as a prominent example of an organic conductor. Renowned for its exceptional conductivity, substantial light transmissibility, water processability, and remarkable flexibility, PEDOT:PSS has earned its reputation as a leading conductive polymer. This study explores the unique effects of two additives, Bisphenol A diglycidyl ether (DGEBA) and Dimethyl sulfoxide (DMSO), on the PSS component of PEDOT:PSS films are shown. Both additives induce grain size growth, while DGEBA makes the PEDOT:PSS layer hydrophobic, which acts as a passivation to protect the perovskite layer, which is vulnerable to moisture. The other additive, DMSO, separates the PSS groups, resulting in increased conductivity through the free movement of holes. With these multi-modified p-type PEDOT:PSS, the ITO/M-PEDOT:PSS/Perovskite/PCBM/Ag structured reverse structure solar cell has improved the power conversion efficiency (PCE) from 15.28% to 17.80% compared to the control cell with conventional PEDOT:PSS. It also maintains 90% for 500 h at 60 °C and 300 h at 1 sun illuminating conditions.

2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731933

RESUMO

Despite the promising applications of the use of quantum dots (QDs) in the biomedical field, the long-lasting effects of QDs on the cell remain poorly understood. To comprehend the mechanisms underlying the toxic effects of QDs in yeast, we characterized defects associated with receptor-mediated endocytosis (RME) as well as pinocytosis using Saccharomyces cerevisiae as a model in the presence of cadmium selenide/zinc sulfide (CdSe/ZnS) QDs. Our findings revealed that QDs led to an inefficient RME at the early, intermediate, and late stages of endocytic patch maturation at the endocytic site, with the prolonged lifespan of GFP fused yeast fimbrin (Sac6-GFP), a late marker of endocytosis. The transit of FM1-43, a lipophilic dye from the plasma membrane to the vacuole, was severely retarded in the presence of QDs. Finally, QDs caused an accumulation of monomeric red fluorescent protein fused carbamoyl phosphate synthetase 1 (mRFP-Cps1), a vacuolar lumen marker in the vacuole. In summary, the present study provides novel insights into the possible impact of CdSe/ZnS QDs on the endocytic machinery, enabling a deeper comprehension of QD toxicity.


Assuntos
Compostos de Cádmio , Endocitose , Pontos Quânticos , Saccharomyces cerevisiae , Compostos de Selênio , Sulfetos , Compostos de Zinco , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Endocitose/efeitos dos fármacos , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/metabolismo , Compostos de Cádmio/toxicidade , Compostos de Selênio/toxicidade , Sulfetos/toxicidade , Sulfetos/metabolismo , Compostos de Zinco/toxicidade , Vacúolos/metabolismo , Vacúolos/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673765

RESUMO

Quantum dots (QDs) are a novel type of nanomaterial that has unique optical and physical characteristics. As such, QDs are highly desired because of their potential to be used in both biomedical and industrial applications. However, the mass adoption of QDs usage has raised concerns among the scientific community regarding QDs' toxicity. Although many papers have reported the negative impact of QDs on a cellular level, the exact mechanism of the QDs' toxicity is still unclear. In this investigation, we study the adverse effects of QDs by focusing on one of the most important cellular processes: actin polymerization and depolymerization. Our results showed that QDs act in a biphasic manner where lower concentrations of QDs stimulate the polymerization of actin, while high concentrations of QDs inhibit actin polymerization. Furthermore, we found that QDs can bind to filamentous actin (F-actin) and cause bundling of the filament while also promoting actin depolymerization. Through this study, we found a novel mechanism in which QDs negatively influence cellular processes and exert toxicity.


Assuntos
Actinas , Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Sulfetos , Compostos de Zinco , Pontos Quânticos/química , Actinas/metabolismo , Compostos de Zinco/química , Sulfetos/química , Compostos de Cádmio/química , Compostos de Selênio/química , Polimerização , Animais , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Humanos
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628860

RESUMO

Quantum dots (QDs) are a type of nanoparticle with exceptional photobleaching-resistant fluorescence. They are highly sought after for their potential use in various optical-based biomedical applications. However, there are still concerns regarding the use of quantum dots. As such, much effort has been invested into understanding the mechanisms behind the behaviors of QDs, so as to develop safer and more biocompatible quantum dots. In this mini-review, we provide an update on the recent advancements regarding the use of QDs in various biomedical applications. In addition, we also discuss# the current challenges and limitations in the use of QDs and propose a few areas of interest for future research.


Assuntos
Nanopartículas , Pontos Quânticos , Fluorescência , Fotodegradação
5.
Int J Mol Sci ; 24(22)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38003523

RESUMO

Quantum dots (QDs) have been highly sought after in the past few decades for their potential to be used in many biomedical applications. However, QDs' cytotoxicity is still a major concern that limits the incorporation of QDs into cutting-edge technologies. Thus, it is important to study and understand the mechanism by which QDs exert their toxicity. Although many studies have explored the cytotoxicity of quantum dots through the transcriptomic level and reactive species generation, the impact of quantum dots on the expression of cellular protein remains unclear. Using Saccharomyces cerevisiae as a model organism, we studied the effect of cadmium selenide zinc sulfide quantum dots (CdSe/ZnS QDs) on the proteomic profile of budding yeast cells. We found a total of 280 differentially expressed proteins after 6 h of CdSe/ZnS QDs treatment. Among these, 187 proteins were upregulated, and 93 proteins were downregulated. The majority of upregulated proteins were found to be associated with transcription/RNA processing, intracellular trafficking, and ribosome biogenesis. On the other hand, many of the downregulated proteins are associated with cellular metabolic pathways and mitochondrial components. Through this study, the cytotoxicity of CdSe/ZnS QDs on the proteomic level was revealed, providing a more well-rounded knowledge of QDs' toxicity.


Assuntos
Pontos Quânticos , Compostos de Selênio , Saccharomyces cerevisiae , Proteômica , Compostos de Zinco/toxicidade , Sulfetos/farmacologia , Compostos de Selênio/toxicidade
6.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835463

RESUMO

Metal oxide nanoparticles (MONPs) are widely used in agriculture and food development but there is little understanding of how MONPs, including ZnO, CuO, TiO2, and SnO2, impact human health and the environment. Our growth assay revealed that none of these (up to 100 µg/mL) negatively affect viability in the budding yeast, Saccharomyces cerevisiae. In contrast, both human thyroid cancer cells (ML-1) and rat medullary thyroid cancer cells (CA77) displayed a significant reduction in cell viability with the treatment of CuO and ZnO. The production of reactive oxygen species (ROS) in these cell lines, when treated with CuO and ZnO, was found to be not significantly altered. However, levels of apoptosis with ZnO and CuO were increased, which led us to conclude that the decreased cell viability is mainly caused by non-ROS-mediated cell death. Consistently, data from our RNAseq studies identified differentially regulated pathways associated with inflammation, Wnt, and cadherin signaling across both cell lines, ML-1, and CA77, after ZnO or CuO MONP treatment. Results from gene studies further support non-ROS-mediated apoptosis being the main factor behind decreased cell viability. Together, these findings provide unique evidence that the apoptosis in response to treatment of CuO and ZnO in these thyroid cancer cells was not mainly due to oxidative stress, but to the alteration of a range of signal cascades that promotes cell death.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Neoplasias da Glândula Tireoide , Óxido de Zinco , Ratos , Animais , Humanos , Estresse Oxidativo , Cobre , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular , Óxidos
7.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834208

RESUMO

Quantum dots (QDs) are a type of nanoparticle with excellent optical properties, suitable for many optical-based biomedical applications. However, the potential of quantum dots to be used in clinical settings is limited by their toxicity. As such, much effort has been invested to examine the mechanism of QDs' toxicity. Yet, the current literature mainly focuses on ROS- and apoptosis-mediated cell death induced by QDs, which overlooks other aspects of QDs' toxicity. Thus, our study aimed to provide another way by which QDs negatively impact cellular processes by investigating the possibility of protein structure and function modification upon direct interaction. Through shotgun proteomics, we identified a number of QD-binding proteins, which are functionally associated with essential cellular processes and components, such as transcription, translation, vesicular trafficking, and the actin cytoskeleton. Among these proteins, we chose to closely examine the interaction between quantum dots and actin, as actin is one of the most abundant proteins in cells and plays crucial roles in cellular processes and structural maintenance. We found that CdSe/ZnS QDs spontaneously bind to G-actin in vitro, causing a static quenching of G-actin's intrinsic fluorescence. Furthermore, we found that this interaction favors the formation of a QD-actin complex with a binding ratio of 1:2.5. Finally, we also found that CdSe/ZnS QDs alter the secondary structure of G-actin, which may affect G-actin's function and properties. Overall, our study provides an in-depth mechanistic examination of the impact of CdSe/ZnS QDs on G-actin, proposing that direct interaction is another aspect of QDs' toxicity.


Assuntos
Pontos Quânticos , Compostos de Selênio , Actinas , Compostos de Zinco/química , Sulfetos/química , Compostos de Selênio/química
8.
J Physiol ; 600(22): 4779-4806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36121759

RESUMO

The assessment of left ventricular (LV) contractility in animal models is useful in various experimental paradigms, yet obtaining such measures is inherently challenging and surgically invasive. In a cross-species study using small and large animals, we comprehensively tested the agreement and validity of multiple single-beat surrogate metrics of LV contractility against the field-standard metrics derived from inferior vena cava occlusion (IVCO). Fifty-six rats, 27 minipigs and 11 conscious dogs underwent LV and arterial catheterization and were assessed for a range of single-beat metrics of LV contractility. All single-beat metrics were tested for the various underlying assumptions required to be considered a valid metric of cardiac contractility, including load-independency, sensitivity to inotropic stimulation, and ability to diagnose contractile dysfunction in cardiac disease. Of all examined single-beat metrics, only LV maximal pressure normalized to end-diastolic volume (EDV), end-systolic pressure normalized to EDV, and the maximal rate of rise of the LV pressure normalized to EDV showed a moderate-to-excellent agreement with their IVCO-derived reference measure and met all the underlying assumptions required to be considered as a valid cardiac contractile metric in both rodents and large-animal models. Our findings demonstrate that single-beat metrics can be used as a valid, reliable method to quantify cardiac contractile function in basic/preclinical experiments utilizing small- and large-animal models KEY POINTS: Validating and comparing indices of cardiac contractility that avoid caval occlusion would offer considerable advantages for the field of cardiovascular physiology. We comprehensively test the underlying assumptions of multiple single-beat indices of cardiac contractility in rodents and translate these findings to pigs and conscious dogs. We show that when performing caval occlusion is unfeasible, single-beat metrics can be utilized to accurately quantify cardiac inotropic function in basic and preclinical research employing various small and large animal species. We report that maximal left-ventricular (LV)-pressure normalized to end-diastolic volume (EDV), LV end-systolic pressure normalized to EDV and the maximal rate of rise of the LV pressure waveform normalized to EDV are the best three single-beat metrics to measure cardiac inotropic function in both small- and large-animal models.


Assuntos
Benchmarking , Função Ventricular Esquerda , Animais , Cães , Ratos , Suínos , Função Ventricular Esquerda/fisiologia , Porco Miniatura , Contração Miocárdica/fisiologia , Ventrículos do Coração , Volume Sistólico/fisiologia
9.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142693

RESUMO

Quantum dots are nanocrystals with bright and tunable fluorescence. Due to their unique property, quantum dots are sought after for their potential in several applications in biomedical sciences as well as industrial use. However, concerns regarding QDs' toxicity toward the environment and other biological systems have been rising rapidly in the past decade. In this mini-review, we summarize the most up-to-date details regarding quantum dots' impacts, as well as QDs' interaction with mammalian organisms, fungal organisms, and plants at the cellular, tissue, and organismal level. We also provide details about QDs' cellular uptake and trafficking, and QDs' general interactions with biological structures. In this mini-review, we aim to provide a better understanding of our current standing in the research of quantum dots, point out some knowledge gaps in the field, and provide hints for potential future research.


Assuntos
Nanopartículas , Pontos Quânticos , Animais , Fluorescência , Mamíferos , Pontos Quânticos/química
10.
Medicina (Kaunas) ; 58(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35888600

RESUMO

Background and Objectives: Petechial cerebral hemorrhages can be caused by various factors, such as traumas, cerebral infarctions, and aging, and is related to the disruption of the blood-brain barrier or the cellular damage of blood vessels. However, there is no animal model that recapitulates cerebral petechial hemorrhages. Materials and Methods: Here, we implemented a petechial hemorrhage using a novel technology, i.e., microbubble-assisted focused ultrasound (MB + FUS). Results: This method increases the permeability of the blood-brain barrier by directly applying mechanical force to the vascular endothelial cells through cavitation of the microbubbles. Microbubble-enhanced cavitation has the advantage of controlling the degree and location of petechial hemorrhages. Conclusions: We thus generated a preclinical rat model using noninvasive focal MB + FUS. This method is histologically similar to actual petechial hemorrhages of the brain and allows the achievement of a physiologically resembling petechial hemorrhage. In the future, this method shall be considered as a useful animal model for studying the pathophysiology and treatment of petechial cerebral hemorrhages.


Assuntos
Barreira Hematoencefálica , Células Endoteliais , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Barreira Hematoencefálica/fisiologia , Hemorragia Cerebral/diagnóstico por imagem , Modelos Animais de Doenças , Microbolhas , Ratos
11.
J Neurosci ; 40(9): 1943-1955, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-31974206

RESUMO

Currently, the role of transient receptor potential vanilloid type 4 (TRPV4), a nonselective cation channel in the pathology of spinal cord injury (SCI), is not recognized. Herein, we report the expression and contribution of TRPV4 in the pathology of scarring and endothelial and secondary damage after SCI. TRPV4 expression increased during the inflammatory phase in female rats after SCI and was expressed primarily by cells at endothelial-microglial junctions. Two-photon microscopy of intracellular-free Ca2+ levels revealed a biphasic increase at similar time points after SCI. Expression of TRPV4 at the injury epicenter, but not intracellular-free Ca2+, progressively increases with the severity of the injury. Activation of TRPV4 with specific agonist altered the organization of endothelial cells, affected tight junctions in the hCMEC/D3 BBB cell line in vitro, and increases the scarring in rat spinal cord as well as induced endothelial damage. By contrast, suppression of TRPV4 with a specific antagonist or in female Trpv4 KO mouse attenuated inflammatory cytokines and chemokines, prevented the degradation of tight junction proteins, and preserve blood-spinal cord barrier integrity, thereby attenuate the scarring after SCI. Likewise, secondary damage was reduced, and behavioral outcomes were improved in Trpv4 KO mice after SCI. These results suggest that increased TRPV4 expression disrupts endothelial cell organization during the early inflammatory phase of SCI, resulting in tissue damage, vascular destabilization, blood-spinal cord barrier breakdown, and scarring. Thus, TRPV4 inhibition/knockdown represents a promising therapeutic strategy to stabilize/protect endothelial cells, attenuate nociception and secondary damage, and reduce scarring after SCI.SIGNIFICANCE STATEMENT TRPV4, a calcium-permeable nonselective cation channel, is widely expressed in both excitable and nonexcitable cells. Spinal cord injury (SCI) majorly caused by trauma/accidents is associated with changes in osmolarity, mechanical injury, and shear stress. After SCI, TRPV4 was increased and were found to be linked with the severity of injury at the epicenter at the time points that were reported to be critical for repair/treatment. Activation of TRPV4 was damaging to endothelial cells that form the blood-spinal cord barrier and thus contributes to scarring (glial and fibrotic). Importantly, inhibition/knockdown of TRPV4 prevented these effects. Thus, the manipulation of TRPV4 signaling might lead to new therapeutic strategies or combinatorial therapies to protect endothelial cells and enhance repair after SCI.


Assuntos
Endotélio/patologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Medula Espinal/patologia , Canais de Cátion TRPV/metabolismo , Animais , Comportamento Animal , Quimiocinas/metabolismo , Citocinas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Locomoção , Camundongos , Camundongos Knockout , Microglia/metabolismo , Microglia/patologia , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/psicologia , Canais de Cátion TRPV/genética , Junções Íntimas/metabolismo , Junções Íntimas/patologia
12.
BMC Womens Health ; 20(1): 256, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213437

RESUMO

BACKGROUND: Fascin is an actin-binding protein and highly expressed in ovarian cancer cells. It is associated with metastasis of cancer and may be a useful prognostic factor. Anticancer activity of curcumin is related to its effect on several signaling mechanisms. Although there have been many reports regarding the anticancer properties of curcumin, its inhibitory effects on migration and invasion of ovarian cancer cells, particularly in the context of fascin expression, have not been reported. The purpose of this study was to investigate the effect of curcumin on fascin expression in ovarian cancer cells and to propose a possible mechanism for the anticancer activity of curcumin through reduced fascin expression. METHODS: SKOV3, human epithelial ovary cancer cell line, was cultured with curcumin at various dose and duration. The fascin was quantified using cell viability test and Western blot. To determine the effect of curcumin on the upstream pathway of fascin expression, the signal transducer and activator of transcription 3 (STAT3) was analyzed by sandwich-ELISA. Attachment assay, migration assay and invasion assay were analyzed to approve the change of cellular invasiveness of ovary cancer after curcumin. To determine the morphological changes of ovarian cancer cells by curcumin, immunofluorescence was performed. RESULTS: MTS assays showed that cell viability was different at various concentration of curcumin, and as concentration increased, cell viability tended to decrease. Curcumin appears to suppress fascin expression, even with a minimal concentration and short exposure time. Also, curcumin may suppress fascin expression in ovarian cancer cells through STAT3 downregulation. The attachment assay, migration assay and invasion assay of the ovarian cancer cells exhibited a statistically significant decrease. Immunofluorescence revealed a change of cell shape from a typical form of uninfluenced cells to a more polygonal appearance, with a significant reduction in filopodia formation. CONCLUSIONS: Curcumin reduces fascin expression through JAK/STAT3 pathway inhibition, which interferes with the cellular interactions essential for the metastasis and recurrence of ovarian cancer cells. Higher curcumin concentrations and longer exposure times concomitantly decreased fascin expression.


Assuntos
Proteínas de Transporte , Curcumina , Proteínas dos Microfilamentos , Neoplasias Ovarianas , Proteínas de Transporte/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Curcumina/farmacologia , Feminino , Humanos , Janus Quinases/metabolismo , Proteínas dos Microfilamentos/efeitos dos fármacos , Proteínas dos Microfilamentos/metabolismo , Metástase Neoplásica , Recidiva Local de Neoplasia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
13.
Int J Mol Sci ; 21(24)2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33322579

RESUMO

Osteoporosis is a complex multifactorial condition of the musculoskeletal system. Osteoporosis and osteoporotic vertebral fracture (OVF) are associated with high medical costs and can lead to poor quality of life. Genetic factors are important in determining bone mass and structure, as well as any predisposition for bone degradation and OVF. However, genetic factors are not enough to explain osteoporosis development and OVF occurrence. Epigenetics describes a mechanism for controlling gene expression and cellular processes without altering DNA sequences. The main mechanisms in epigenetics are DNA methylation, histone modifications, and non-coding RNAs (ncRNAs). Recently, alterations in epigenetic mechanisms and their activity have been associated with osteoporosis and OVF. Here, we review emerging evidence that epigenetics contributes to the machinery that can alter DNA structure, gene expression, and cellular differentiation during physiological and pathological bone remodeling. A progressive understanding of normal bone metabolism and the role of epigenetic mechanisms in multifactorial osteopathy can help us better understand the etiology of the disease and convert this information into clinical practice. A deep understanding of these mechanisms will help in properly coordinating future individual treatments of osteoporosis and OVF.


Assuntos
Epigenômica/métodos , Fraturas Ósseas/genética , Osteoporose/genética , Fraturas por Osteoporose/genética , Metilação de DNA/genética , Metilação de DNA/fisiologia , Epigênese Genética/genética , Epigênese Genética/fisiologia , Fraturas Ósseas/patologia , Humanos , Fraturas da Coluna Vertebral/genética
14.
Int J Mol Sci ; 21(12)2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32560070

RESUMO

Tauroursodeoxycholic acid (TUDCA) is a US FDA-approved hydrophilic bile acid for the treatment of chronic cholestatic liver disease. In the present study, we investigate the effects of TUDCA on the proliferation and differentiation of osteoblasts and its therapeutic effect on a mice model of osteoporosis. Following treatment with different concentrations of TUDCA, cell viability, differentiation, and mineralization were measured. Three-month-old female C57BL/6 mice were randomly divided into three groups (n = 8 mice per group): (i) normal mice as the control group, (ii) ovariectomy (OVX) group (receiving phosphate-buffered saline (PBS) treatment every other day for 4 weeks), and (iii) OVX group with TUDCA (receiving TUDCA treatment every other day for 4 weeks starting 6 weeks after OVX). At 11 weeks post-surgery, serum levels of procollagen type I N-terminal propeptides (PINP) and type I collagen crosslinked C-telopeptides (CTX) were measured, and all mice were sacrificed to examine the distal femur by micro-computed tomography (CT) scans and histology. TUDCA (100 nM, 1 µM) significantly increased the proliferation and viability of osteoblasts and osteoblast differentiation and mineralization when used in vitro. Furthermore, TUDCA neutralized the detrimental effects of methylprednisolone (methylprednisolone-induced osteoblast apoptosis). In the TUDCA treatment group the PINP level was higher and the CTX level was lower, but these levels were not significantly different compared to the PBS treatment group. Micro-CT and histology showed that the TUDCA treatment group preserved more trabecular structures in the distal femur compared to the PBS treatment group. In addition, the TUDCA treatment group increased the percentage bone volume with respect to the total bone volume, bone mineral density, and mice distal femur trabeculae compared with the PBS treatment group. Taken together, our findings suggest that TUDCA may provide a favorable effect on bones and could be used for the prevention and treatment of osteoporosis.


Assuntos
Osteoporose/tratamento farmacológico , Ovariectomia/efeitos adversos , Fragmentos de Peptídeos/metabolismo , Pró-Colágeno/metabolismo , Ácido Tauroquenodesoxicólico/administração & dosagem , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Metilprednisolona/efeitos adversos , Camundongos , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Osteoporose/etiologia , Osteoporose/metabolismo , Distribuição Aleatória , Ácido Tauroquenodesoxicólico/farmacologia , Resultado do Tratamento
15.
FEMS Yeast Res ; 19(2)2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624622

RESUMO

Engineered nanomaterials are commercially used in everyday products including zinc sunscreens and water-resistant fabrics and surfaces. Therefore, understanding the effects of engineered nanomaterials on the environment is crucial for the responsible use of these technologies. We investigated the effects of 20 nm spherical citrate-coated silver nanoparticles (AgNPs) on the budding yeast Saccharomyces cerevisiae. Our growth assay showed that AgNPs have an inhibitory effect on yeast growth with concentrations above 5 µg/mL. Hundreds of genes in AgNP-treated cells were differentially expressed according to our transcriptome analysis based on RNAseq, including genes implicated in rRNA processing, ribosome biogenesis, cell wall formation, cell membrane integrity and mitochondrial functions. In particular, genes whose functions are associated with processing of small and large subunits of ribosomes were upregulated, while genes for cell wall/plasma membrane/mitochondrial integrity were downregulated. Consistently, our cell wall stability assay confirmed that cells with AgNPs are more susceptible to cell wall damage than non-treated cells. Levels of four significantly altered genes with AgNPs, including FAF1, SDA1, TIR1 and DAN1, were validated by reproducible results with RT-qPCR assays. Our transcriptome profile leads us to conclude that the exposure of cells to sublethal amounts of AgNPs affects many cellular processes negatively.


Assuntos
Antifúngicos/metabolismo , Nanopartículas/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Prata/metabolismo , Transcriptoma , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Análise de Sequência de RNA
16.
Cell Biol Int ; 43(10): 1137-1151, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30080296

RESUMO

Protein recycling is an important cellular process required for cell homeostasis. Results from prior studies have shown that vacuolar sorting protein-1 (Vps1), a dynamin homolog in yeast, is implicated in protein recycling from the endosome to the trans-Golgi Network (TGN). However, the function of Vps1 in relation to Ypt6, a master GTPase in the recycling pathway, remains unknown. The present study reveals that Vps1 physically interacts with Ypt6 if at least one of them is full-length. We found that overexpression of full-length Vps1, but not GTP hydrolysis-defective Vps1 mutants, is sufficient to rescue abnormal phenotypes of Snc1 distribution provoked by the loss of Ypt6, and vice versa. This suggests that Vps1 and Ypt6 function in parallel pathways instead of in a sequential pathway and that GTP binding/hydrolysis of Vps1 is required for proper traffic of Snc1 toward the TGN. Additionally, we identified two novel Vps1-binding partners, Vti1 and Snc2, which function for the endosome-derived vesicle fusion at the TGN. Taken together, the present study demonstrates that Vps1 plays a role in later stages of the endosome-to-TGN traffic.


Assuntos
Endossomos/metabolismo , Proteínas de Ligação ao GTP/fisiologia , Complexo de Golgi/metabolismo , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Proteínas R-SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Transporte Proteico
17.
J Nanosci Nanotechnol ; 19(3): 1364-1367, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30469189

RESUMO

Stable Na+-ion-storage cathodes with adequate reversible capacities are increasingly needed for the application of Na-ion batteries in large-scale, low-cost electric storage systems. Ion-storage oxides have been classified into P2- and O3-type phases based on their sodium content. There have been few studies on the structural stability and electrochemical properties of such oxides. Here, we report the synthesis of a sodium-ion battery (SIB) cathode material Nax[Ni0.8Co0.1Mn0.1]O2 (x = 0.67, 1) using a hydroxide co-precipitation method. The effects of different sodium contents on the structural and electrochemical properties of this cathode material were studied. The results indicated better electrochemical performance of the P2-type materials compared to the O3-type in terms of high discharge capacity and good cycling performance. The P2-Na0.67[Ni0.8Co0.1Mn0.1]O2 cathode exhibited a good charge storage capacity of 108.74 mAhg-1, with a capacity retention of over 67% after 50 voltage cycles (between 2.0 and 4.5 V) at 0.1 C. The developed material may potentially be used as a cathode in sodium-ion batteries.

18.
Cell Biol Int ; 42(7): 890-902, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29500884

RESUMO

Protein recycling is an essential cellular process involving endocytosis, intracellular trafficking, and exocytosis. In mammalian systems membrane lipids, including cholesterol, sphingolipids, and phospholipids, play a pivotal role in protein recycling. To address this role in budding yeast, Saccharomyces cerevisiae, we utilized GFP-Snc1, a v-SNARE protein serving as a fluorescent marker for faithfully reporting the recycling pathway. Here we demonstrate results that display moderate to significant GFP-Snc1 recycling defects upon overexpression or inactivation of phospholipid, ergosterol, and sphingolipid biosynthesis enzymes, indicating that the homeostasis of membrane lipid levels is prerequisite for proper protein recycling. By using a truncated version of GFP-Snc1 that cannot be recycled from the plasma membrane, we determined that abnormalities in Snc1 localization in membrane lipid overexpression or underexpression mutants are not due to defects in the synthetic/secretory pathway, but rather in the intracellular trafficking pathway. We found that membrane lipid imbalance resulted in an accumulation of the late endosome marker Vps10-GFP, indicating trafficking from the endosomes to the Golgi may be being hindered, preventing recycling to the plasma membrane. To elucidate the possible mechanism for this trafficking hindrance, we stained the actin cytoskeleton, then quantified the percentage of cells with visible actin cables. Compared to wild-type cells, membrane lipid mutant cells exhibited lower levels of actin cables, indicating the actin cytoskeleton is disrupted upon membrane lipid imbalance. Taken together, our results show that impairment of proper recycling may be due to disruption of the actin cytoskeleton, which causes trafficking hindrance between the endosomes and Golgi.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Lipídeos de Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Citoesqueleto de Actina/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Appl Opt ; 57(12): 3288-3292, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29714318

RESUMO

A stand-off laser-induced breakdown spectroscopy (LIBS) system was developed to determine the elemental composition of contamination particles during semiconductor manufacturing. It successfully detected laboratory-generated monodisperse (size=200 nm and 300 nm) CaCl2 particles and internally mixed particles of CaCl2, MgCl2, NaCl, and KCl. Temperature and pressure effects on the LIBS emission signals were investigated. The peak area and signal-to-noise ratio of the emission lines increased with the temperature (25°C-250°C). Stronger emission lines were observed at higher pressure. Although temperature and pressure affect the LIBS signals, the developed stand-off LIBS could be employed for real-time detection of the elemental composition of contamination particles.

20.
Eur Spine J ; 27(Suppl 3): 330-334, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28752246

RESUMO

PURPOSE: The presence of prominent OALL (ossification of anterior longitudinal ligament) in the anterior cervical spine has been implicated as a cause of dysphagia. Surgical resection of the OALL is considered effective for the management of diffuse idiopathic skeletal hyperostosis (DISH)-related dysphagia. Although many reports have been published on DISH-related dysphagia, no cases of postoperative cervical instability have been reported thus far. We present a case in which the patient developed myelopathy associated with instability consequent to resection of OALL in DISH. METHODS: A 62-year-old man presented with progressive dysphagia that persisted for a year. The patient's symptoms were successfully resolved by resection of OALL. Five years after the surgery, the dysphagia resurfaced and was found to be caused by the regrowth of the OALL. A repeat surgery was performed, and the dysphagia disappeared. Eleven months after the second surgery, he visited the hospital with progressive quadriparesis and pain in the cervical region. RESULTS: Nine-month follow-up radiologic study revealed cervical instability at the level of C5-6 resulting in myelopathy. The patient underwent decompressive laminectomy and posterior fusion surgery. CONCLUSION: Surgical resection of DISH-related dysphagia typically yields excellent outcomes, but our experience in this case highlights the possibility of OALL regrowth and subsequent cervical instability after resection of OALL.


Assuntos
Hiperostose Esquelética Difusa Idiopática/complicações , Instabilidade Articular/complicações , Ligamentos Longitudinais/cirurgia , Ossificação Heterotópica/cirurgia , Doenças da Medula Espinal/complicações , Vértebras Cervicais/patologia , Vértebras Cervicais/cirurgia , Transtornos de Deglutição/etiologia , Transtornos de Deglutição/cirurgia , Humanos , Hiperostose Esquelética Difusa Idiopática/cirurgia , Instabilidade Articular/cirurgia , Laminectomia/efeitos adversos , Laminectomia/métodos , Ligamentos Longitudinais/patologia , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Cervicalgia/etiologia , Ossificação Heterotópica/complicações , Complicações Pós-Operatórias , Recidiva , Reoperação/efeitos adversos , Doenças da Medula Espinal/cirurgia , Fusão Vertebral/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa