Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Mol Cell ; 70(1): 72-82.e7, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625039

RESUMO

During the maternal-to-zygotic transition (MZT), maternal RNAs are actively degraded and replaced by newly synthesized zygotic transcripts in a highly coordinated manner. However, it remains largely unknown how maternal mRNA decay is triggered in early vertebrate embryos. Here, through genome-wide profiling of RNA abundance and 3' modification, we show that uridylation is induced at the onset of maternal mRNA clearance. The temporal control of uridylation is conserved in vertebrates. When the homologs of terminal uridylyltransferases TUT4 and TUT7 (TUT4/7) are depleted in zebrafish and Xenopus, maternal mRNA clearance is significantly delayed, leading to developmental defects during gastrulation. Short-tailed mRNAs are selectively uridylated by TUT4/7, with the highly uridylated transcripts degraded faster during the MZT than those with unmodified poly(A) tails. Our study demonstrates that uridylation plays a crucial role in timely mRNA degradation, thereby allowing the progression of early development.


Assuntos
Embrião de Mamíferos/enzimologia , Embrião não Mamífero/enzimologia , Nucleotidiltransferases/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Transcriptoma , Xenopus laevis/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Gastrulação , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Camundongos Endogâmicos ICR , Nucleotidiltransferases/genética , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo
2.
J Cell Physiol ; 236(1): 379-391, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32542692

RESUMO

Protein kinase C-δ (PKCδ) is a diacylglycerol-dependent, calcium-independent novel PKC isoform that is engaged in various cell signaling pathways, such as cell proliferation, apoptosis, inflammation, and oxidative stress. In this study, we searched for proteins that bind PKCδ using a yeast two-hybrid assay and identified murine arrest-defective 1 (mARD1) as a binding partner. The interaction between PKCδ and mARD1 was confirmed by glutathione S-transferase pull-down and co-immunoprecipitation assays. Furthermore, recombinant PKCδ phosphorylated full-length mARD1 protein. The NetPhos online prediction tool suggested PKCδ phosphorylates Ser80 , Ser108 , and Ser114 residues of mARD1 with the highest probability. Based on these results, we synthesized peptides containing these sites and examined their phosphorylations using recombinant PKCδ. Autoradiography confirmed these sites were efficiently phosphorylated. Consequent mass spectrometry and peptide sequencing in combination with MALDI-TOF MS/MS confirmed that Ser80 and Ser108 were major phosphorylation sites. The alanine mutations of Ser80 and Ser108 abolished the phosphorylation of mARD1 by PKCδ in 293T cells supporting these observations. In addition, kinase assays using various PKC isotypes showed that Ser80 of ARD1 was phosphorylated by PKCßI and PKCζ isotypes with the highest selectivity, while Ser108 and/or Ser114 were phosphorylated by PKCγ with activities comparable to that of the PKCδ isoform. Overall, these results suggest the possibility that PKCδ transduces signals by regulating phosphorylation of ARD1.


Assuntos
Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Fosforilação/fisiologia , Proteína Quinase C-delta/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Camundongos , Estresse Oxidativo/fisiologia , Peptídeos/metabolismo , Isoformas de Proteínas/metabolismo , Serina/metabolismo , Transdução de Sinais/fisiologia
3.
Circulation ; 142(18): 1736-1751, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32883094

RESUMO

BACKGROUND: Macrophages produce many inflammation-associated molecules, released by matrix metalloproteinases, such as adhesion molecules, and cytokines, as well, which play a crucial role in atherosclerosis. In this context, we investigated the relationship between Ninjurin-1 (Ninj1 [nerve injury-induced protein]), a novel matrix metalloproteinase 9 substrate, expression, and atherosclerosis progression. METHODS: Ninj1 expression and atherosclerosis progression were assessed in atherosclerotic aortic tissue and serum samples from patients with coronary artery disease and healthy controls, and atheroprone apolipoprotein e-deficient (Apoe-/-) and wild-type mice, as well. Apoe-/- mice lacking systemic Ninj1 expression (Ninj1-/-Apoe-/-) were generated to assess the functional effects of Ninj1. Bone marrow transplantation was also used to generate low-density lipoprotein receptor-deficient (Ldlr-/-) mice that lack Ninj1 specifically in bone marrow-derived cells. Mice were fed a Western diet for 5 to 23 weeks, and atherosclerotic lesions were investigated. The anti-inflammatory role of Ninj1 was verified by treating macrophages and mice with the peptides Ninj11-56 (ML56) and Ninj126-37 (PN12), which mimic the soluble form of Ninj1 (sNinj1). RESULTS: Our in vivo results conclusively showed a correlation between Ninj1 expression in aortic macrophages and the extent of human and mouse atherosclerotic lesions. Ninj1-deficient macrophages promoted proinflammatory gene expression by activating mitogen-activated protein kinase and inhibiting the phosphoinositide 3-kinase/Akt signaling pathway. Whole-body and bone marrow-specific Ninj1 deficiencies significantly increased monocyte recruitment and macrophage accumulation in atherosclerotic lesions through elevated macrophage-mediated inflammation. Macrophage Ninj1 was directly cleaved by matrix metalloproteinase 9 to generate a soluble form that exhibited antiatherosclerotic effects, as assessed in vitro and in vivo. Treatment with the sNinj1-mimetic peptides, ML56 and PN12, reduced proinflammatory gene expression in human and mouse classically activated macrophages, thereby attenuating monocyte transendothelial migration. Moreover, continuous administration of mPN12 alleviated atherosclerosis by inhibiting the enhanced monocyte recruitment and inflammation characteristics of this disorder in mice, regardless of the presence of Ninj1. CONCLUSIONS: Ninj1 is a novel matrix metalloproteinase 9 substrate in macrophages, and sNinj1 is a secreted atheroprotective protein that regulates macrophage inflammation and monocyte recruitment in atherosclerosis. Moreover, sNinj1-mediated anti-inflammatory effects are conserved in human macrophages and likely contribute to human atherosclerosis.


Assuntos
Anti-Inflamatórios/farmacologia , Aterosclerose , Moléculas de Adesão Celular Neuronais , Macrófagos/metabolismo , Fatores de Crescimento Neural , Peptidomiméticos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/farmacologia , Feminino , Masculino , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Knockout para ApoE , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/metabolismo , Fatores de Crescimento Neural/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética
4.
Microb Pathog ; 152: 104583, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33164814

RESUMO

In recent years, a significant interest in gut microbiota-host crosstalk has increased due to the involvement of gut bacteria on host health and diseases. Gut dysbiosis, a change in the gut microbiota composition alters host-microbiota interactions and induces gut immune dysregulation that have been associated with pathogenesis of several diseases, including cardiovascular diseases (CVD) and chronic kidney diseases (CKD). Gut microbiota affect the host, mainly through the immunological and metabolism-dependent and metabolism-independent pathways. In addition to these, the production of trimethylamine (TMA)/trimethylamine N-oxide (TMAO), uremic toxins and lipopolysaccharides (LPS) by gut microbiota are involved in the pathogenesis of CVD and CKD. Given the current approaches and challenges that can reshape the bacterial composition by restoring the balance between host and microbiota. In this review, we discuss the complex interplay between the gut microbiota, and the heart and the kidney, and explain the gut-cardiovascular axis and gut-kidney axis on the development and progression of cardiovascular diseases and chronic kidney diseases. In addition, we discuss the interplay between gut and kidney on hypertension or cardiovascular pathology.


Assuntos
Microbioma Gastrointestinal , Insuficiência Renal Crônica , Sistema Digestório , Disbiose , Humanos , Rim
5.
FASEB J ; 34(6): 8702-8720, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32385864

RESUMO

Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1-/- mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1-/- mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1-/- mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1-/- mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy.


Assuntos
Moléculas de Adesão Celular Neuronais/deficiência , Colite/metabolismo , Colite/patologia , Microbioma Gastrointestinal/fisiologia , Macrófagos/metabolismo , Macrófagos/patologia , Fatores de Crescimento Neural/deficiência , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Colite/microbiologia , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Modelos Animais de Doenças , Homeostase/fisiologia , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Ativação de Macrófagos/fisiologia , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Células THP-1/metabolismo
6.
Int J Mol Sci ; 22(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34299195

RESUMO

Betaine aldehyde dehydrogenase 1 (BADH1), a paralog of the fragrance gene BADH2, is known to be associated with salt stress through the accumulation of synthesized glycine betaine (GB), which is involved in the response to abiotic stresses. Despite the unclear association between BADH1 and salt stress, we observed the responses of eight phenotypic characteristics (germination percentage (GP), germination energy (GE), germination index (GI), mean germination time (MGT), germination rate (GR), shoot length (SL), root length (RL), and total dry weight (TDW)) to salt stress during the germination stage of 475 rice accessions to investigate their association with BADH1 haplotypes. We found a total of 116 SNPs and 77 InDels in the whole BADH1 gene region, representing 39 haplotypes. Twenty-nine haplotypes representing 27 mutated alleles (two InDels and 25 SNPs) were highly (p < 0.05) associated with salt stress, including the five SNPs that have been previously reported to be associated with salt tolerance. We observed three predominant haplotypes associated with salt tolerance, Hap_2, Hap_18, and Hap_23, which were Indica specific, indicating a comparatively high number of rice accessions among the associated haplotypes. Eight plant parameters (phenotypes) also showed clear responses to salt stress, and except for MGT (mean germination time), all were positively correlated with each other. Different signatures of domestication for BADH1 were detected in cultivated rice by identifying the highest and lowest Tajima's D values of two major cultivated ecotypes (Temperate Japonica and Indica). Our findings on these significant associations and BADH1 evolution to plant traits can be useful for future research development related to its gene expression.


Assuntos
Betaína-Aldeído Desidrogenase/metabolismo , Betaína/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Betaína-Aldeído Desidrogenase/genética , Genes de Plantas , Germinação , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Oryza/genética , Oryza/crescimento & desenvolvimento , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico
7.
Sensors (Basel) ; 20(4)2020 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-32102224

RESUMO

We propose a free-resolution probability distributions map (FRPDM) and an FRPDM-based precise vehicle localization method using 3D light detection and ranging (LIDAR). An FRPDM is generated by Gaussian mixture modeling, based on road markings and vertical structure point cloud. Unlike single resolution or multi-resolution probability distribution maps, in the case of the FRPDM, the resolution is not fixed and the object can be represented by various sizes of probability distributions. Thus, the shape of the object can be represented efficiently. Therefore, the map size is very small (61 KB/km) because the object is effectively represented by a small number of probability distributions. Based on the generated FRPDM, point-to-probability distribution scan matching and feature-point matching were performed to obtain the measurements, and the position and heading of the vehicle were derived using an extended Kalman filter-based navigation filter. The experimental area is the Gangnam area of Seoul, South Korea, which has many buildings around the road. The root mean square (RMS) position errors for the lateral and longitudinal directions were 0.057 m and 0.178 m, respectively, and the RMS heading error was 0.281°.

8.
Int J Mol Sci ; 21(23)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260683

RESUMO

A-kinase anchor protein 12 (AKAP12) is a scaffolding protein that associates with intracellular molecules to regulate multiple signal transductions. Although the roles of AKAP12 in the central nervous system are still relatively understudied, it was previously shown that AKAP12 regulates blood-retinal barrier formation. In this study, we asked whether AKAP12 also supports the function and integrity of the blood-brain barrier (BBB). In a mouse model of focal ischemia, the expression level of AKAP12 in cerebral endothelial cells was upregulated during the acute phase of stroke. Also, in cultured cerebral endothelial cells, oxygen-glucose deprivation induced the upregulation of AKAP12. When AKAP12 expression was suppressed by an siRNA approach in cultured endothelial cells, endothelial permeability was increased along with the dysregulation of ZO-1/Claudin 5 expression. In addition, the loss of AKAP12 expression caused an upregulation/activation of the Rho kinase pathway, and treatment of Rho kinase inhibitor Y-27632 mitigated the increase of endothelial permeability in AKAP12-deficient endothelial cell cultures. These in vitro findings were confirmed by our in vivo experiments using Akap12 knockout mice. Compared to wild-type mice, Akap12 knockout mice showed a larger extent of BBB damage after stroke. However, the inhibition of rho kinase by Y-27632 tightened the BBB in Akap12 knockout mice. These data may suggest that endogenous AKAP12 works to alleviate the damage and dysfunction of the BBB caused by ischemic stress. Therefore, the AKAP12-rho-kinase signaling pathway represents a novel therapeutic target for stroke.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Proteínas de Ciclo Celular/metabolismo , AVC Isquêmico/metabolismo , AVC Isquêmico/patologia , Animais , Permeabilidade da Membrana Celular , Endotélio Vascular/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Quinases Associadas a rho/metabolismo
9.
Molecules ; 25(3)2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-32013195

RESUMO

Arrest defective 1 (ARD1), also known as N(alpha)-acetyltransferase 10 (NAA10) was originally identified as an N-terminal acetyltransferase (NAT) that catalyzes the acetylation of N-termini of newly synthesized peptides. After that, mammalian ARD1/NAA10 expanded its' role to lysine acetyltransferase (KAT) that post-translationally acetylates internal lysine residues of proteins. ARD1/NAA10 is the only enzyme with both NAT and KAT activities. However, recent studies on the role of human ARD1/NAA10 (hARD1/NAA10) in lysine acetylation are contradictory, as crystal structure and in vitro acetylation assay results revealed the lack of KAT activity. Thus, the role of hARD1/NAA10 in lysine acetylation is still debating. Here, we found a clue that possibly explains these complicated and controversial results on KAT activity of hARD1/NAA10. Recombinant hARD1/NAA10 exhibited KAT activity, which disappeared soon in vitro. Size-exclusion analysis revealed that most recombinant hARD1/NAA10 formed oligomers over time, resulting in the loss of KAT activity. While oligomeric recombinant hARD1/NAA10 lost its ability for lysine acetylation, its monomeric form clearly exhibited lysine acetylation activity in vitro. We also characterized the KAT activity of hARD1/NAA10 that was influenced by several experimental conditions, including concentration of reactants and reaction time. Taken together, our study proves that recombinant hARD1/NAA10 exhibits KAT activity in vitro but only under accurate conditions, including reactant concentrations and reaction duration.


Assuntos
Lisina Acetiltransferases/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/metabolismo , Acetilação , Diálise , Escherichia coli , Humanos , Lisina/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/isolamento & purificação , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/isolamento & purificação , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
10.
Stem Cells ; 36(5): 751-760, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29314444

RESUMO

Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes in cerebral white matter. However, the underlying mechanisms that regulate this process remain to be fully defined, especially in adult brains. Recently, it has been suggested that signaling via A-kinase anchor protein 12 (AKAP12), a scaffolding protein that associates with intracellular molecules such as protein kinase A, may be involved in Schwann cell homeostasis and peripheral myelination. Here, we asked whether AKAP12 also regulates the mechanisms of myelination in the CNS. AKAP12 knockout mice were compared against wild-type (WT) mice in a series of neurochemical and behavioral assays. Compared with WTs, 2-months old AKAP12 knockout mice exhibited loss of myelin in white matter of the corpus callosum, along with perturbations in working memory as measured by a standard Y-maze test. Unexpectedly, very few OPCs expressed AKAP12 in the corpus callosum region. Instead, pericytes appeared to be one of the major AKAP12-expressing cells. In a cell culture model system, conditioned culture media from normal pericytes promoted in-vitro OPC maturation. However, conditioned media from AKAP12-deficient pericytes did not support the OPC function. These findings suggest that AKAP12 signaling in pericytes may be required for OPC-to-oligodendrocyte renewal to maintain the white matter homeostasis in adult brain. Stem Cells 2018;36:751-760.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/citologia , Oligodendroglia/metabolismo , Substância Branca/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Envelhecimento , Animais , Proteínas de Ciclo Celular/genética , Proliferação de Células/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados , Camundongos Knockout , Bainha de Mielina/metabolismo , Neurogênese/fisiologia , Oligodendroglia/citologia , Substância Branca/citologia
11.
Biotechnol Bioeng ; 116(7): 1567-1574, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30934117

RESUMO

On-site genetic detection needs to develop a sensitive and straightforward biosensor without special equipment, which can detect various genetic biomarkers. Hybridization chain reaction (HCR) amplifying signal isothermally could be considered as a good candidate for on-site detection. Here, we developed a novel genetic biosensor on the basis of enzyme-free dual-amplification of universal hybridization chain reaction (uHCR) and hemin/G-quadruplex horseradish peroxidase (HRP)-mimicking DNAzyme. The uHCR is the strategy which enables simple design for multiple target detection by the introduction of target-specific trigger hairpin without changing the whole system according to a target change. Also, HRP-mimicking DNAzyme could produce a sensitive and quantitative colorimetric signal with increased stability with a limit of detection (LOD) of 5.67 nM. The universality of the uHCR biosensor was proven by the detection of four different targets (miR-21, miR-125b, KRAS-Q61K, and BRAF-V600E) for cancer diagnosis. The uHCR biosensor showed specificity that could discriminate single-nucleotide polymorphism. Moreover, the uHCR biosensor could detect targets in the diluted serum sample. Overall, the uHCR biosensor demonstrated the potential for field testing with a simple redesign without complicated steps or special equipment using a universal hairpin system and enzyme-free amplification. This strategy could enable stable and sensitive detection of a variety of targets. Therefore, it could be applied to urgent detection of various pathogens, remote diagnosis, and self-screening of diseases.


Assuntos
Técnicas Biossensoriais , Quadruplex G , Colorimetria , Peroxidase do Rábano Silvestre/química , Humanos
12.
Bioorg Med Chem ; 27(7): 1370-1381, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30827868

RESUMO

On the basis of deguelin, a series of the B,C-ring truncated surrogates with N-substituted amide linkers were investigated as HSP90 inhibitors. The structure activity relationship of the template was studied by incorporating various substitutions on the nitrogen of the amide linker and examining their HIF-1α inhibition. Among them, compound 57 showed potent HIF-1α inhibition and cytotoxicity in triple-negative breast cancer lines in a dose-dependent manner. Compound 57 downregulated expression and phosphorylation of major client proteins of HSP90 including AKT, ERK and STAT3, indicating that its antitumor activity was derived from the inhibition of HSP90 function. The molecular modeling of 57 demonstrated that 57 bound well to the C-terminal ATP-binding pocket in the open conformation of the hHSP90 homodimer with hydrogen bonding and pi-cation interactions. Overall, compound 57 is a potential antitumor agent for triple-negative breast cancer as a HSP90 C-terminal inhibitor.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Rotenona/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Rotenona/síntese química , Rotenona/química , Rotenona/farmacologia , Relação Estrutura-Atividade
13.
J Neurochem ; 146(2): 160-172, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29570780

RESUMO

Ischemic postconditioning is increasingly being investigated as a therapeutic approach for cerebral ischemia. However, the majority of studies are focused on the acute protection of neurons per se. Whether and how postconditioning affects multiple cells in the recovering neurovascular unit remains to be fully elucidated. Here, we asked whether postconditioning may modulate help-me signaling between injured neurons and reactive microglia. Rats were subjected to 100 min of focal cerebral ischemia, then randomized into a control versus postconditioning group. After 3 days of reperfusion, infarct volumes were significantly reduced in animals treated with postconditioning, along with better neurologic outcomes. Immunostaining revealed that ischemic postconditioning increased expression of vascular endothelial growth factor (VEGF) in neurons within peri-infarct regions. Correspondingly, we confirmed that VEGFR2 was expressed on Iba1-positive microglia/macrophages, and confocal microscopy showed that in postconditioned rats, these cells were polarized to a ramified morphology with higher expression of M2-like markers. Treating rats with a VEGF receptor 2 kinase inhibitor negated these effects of postconditioning on microglia/macrophage polarization. In vitro, postconditoning after oxygen-glucose deprivation up-regulated VEGF release in primary neuron cultures, and adding VEGF to microglial cultures partly shifted their M2-like markers. Altogether, our findings support the idea that after postconditioning, injured neurons may release VEGF as a 'help-me' signal that promotes microglia/macrophage polarization into potentially beneficial phenotypes.


Assuntos
Isquemia Encefálica/patologia , Isquemia Encefálica/terapia , Polaridade Celular/fisiologia , Pós-Condicionamento Isquêmico/métodos , Microglia/patologia , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Infarto Encefálico/etiologia , Proteínas de Ligação ao Cálcio/metabolismo , Hipóxia Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Embrião de Mamíferos , Proteína Glial Fibrilar Ácida/metabolismo , Glucose/deficiência , Infusões Intraventriculares , Masculino , Proteínas dos Microfilamentos/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(7): 2163-8, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25646481

RESUMO

Interleukin 4 (IL-4) can suppress delayed-type hypersensitivity reactions (DTHRs), including organ-specific autoimmune diseases in mice and humans. Despite the broadly documented antiinflammatory effect of IL-4, the underlying mode of action remains incompletely understood, as IL-4 also promotes IL-12 production by dendritic cells (DCs) and IFN-γ-producing T(H)1 cells in vivo. Studying the impact of IL-4 on the polarization of human and mouse DCs, we found that IL-4 exerts opposing effects on the production of either IL-12 or IL-23. While promoting IL-12-producing capacity of DCs, IL-4 completely abrogates IL-23. Bone marrow chimeras proved that IL-4-mediated suppression of DTHRs relies on the signal transducer and activator of transcription 6 (STAT6)-dependent abrogation of IL-23 in antigen-presenting cells. Moreover, IL-4 therapy attenuated DTHRs by STAT6- and activating transcription factor 3 (ATF3)-dependent suppression of the IL-23/T(H)17 responses despite simultaneous enhancement of IL-12/TH1 responses. As IL-4 therapy also improves psoriasis in humans and suppresses IL-23/T(H)17 responses without blocking IL-12/T(H)1, selective IL-4-mediated IL-23/T(H)17 silencing is promising as treatment against harmful inflammation, while sparing the IL-12-dependent T(H)1 responses.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Inativação Gênica , Inflamação/fisiopatologia , Interleucina-23/genética , Interleucina-4/fisiologia , Células Th17/imunologia , Humanos
15.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322083

RESUMO

Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Germinação , Proteínas de Domínio MADS/genética , Oryza/crescimento & desenvolvimento , Tolerância ao Sal , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Regulação para Baixo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
16.
J Cell Biochem ; 118(8): 2219-2230, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28067406

RESUMO

Ninjurin1 (Ninj1) is a cell surface protein known as a homophilic adhesion molecule. Previous studies have shown a trans-interaction of Ninj1 between immune cells and endothelial cells; however, little is known about Ninj1 modification and structure in the cis-interaction. We showed that Ninj1 assembles into a homomeric complex via a cis-interaction mediated by the intracellular region and N-glycosylation at Asn60 . We identified cis-interaction between Ninj1 proteins using CFP- and YFP-tagged Ninj1 by Förster resonance energy transfer using a confocal microscope and fluorescence-activated cell sorter. We further observed the Ninj1 homomeric complexes composed of two to six monomeric Ninj1 molecules by a formaldehyde cross-linking assay. Co-immunoprecipitation assays with epitope-tagged truncated Ninj1 suggested that the intracellular region encompassing Leu101 -Ala110 participates in Ninj1 homomer assembly. Ninj1 N-glycosylation was characterized by treatment of tunicamycin and substitution of Asn to Gln or Ala. Fluorescence-activated cell sorting-based Förster resonance energy transfer assays further demonstrated that N-glycosylation is indispensable for the Ninj1 cis-interaction, and a formaldehyde cross-linking assay confirmed that interruption of N-glycosylation by Asn substitution disrupted Ninj1 homomeric complex formation. In silico analysis revealed that Ninj1 is highly conserved in vertebrates and that the conserved sequence contains an N-glycosylation motif and cis-interacting intracellular region, which participate in Ninj1 homomer assembly. Taken together, these data show that Ninj1 assembles into a homomeric protein complex and that N-glycosylation is a prerequisite for Ninj1 homomer assembly. J. Cell. Biochem. 118: 2219-2230, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Moléculas de Adesão Celular Neuronais/química , Moléculas de Adesão Celular Neuronais/metabolismo , Fatores de Crescimento Neural/química , Fatores de Crescimento Neural/metabolismo , Animais , Células da Medula Óssea/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Citometria de Fluxo , Transferência Ressonante de Energia de Fluorescência , Glicosilação/efeitos dos fármacos , Células HEK293 , Humanos , Immunoblotting , Imunoprecipitação , Masculino , Camundongos , Camundongos Knockout , Microscopia Confocal , Células NIH 3T3 , Fatores de Crescimento Neural/genética , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/genética , Tunicamicina/farmacologia
17.
Plant Biotechnol J ; 15(3): 357-366, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27589078

RESUMO

Weedy rice is the same biological species as cultivated rice (Oryza sativa); it is also a noxious weed infesting rice fields worldwide. Its formation and population-selective or -adaptive signatures are poorly understood. In this study, we investigated the phylogenetics, population structure and signatures of selection of Korean weedy rice by determining the whole genomes of 30 weedy rice, 30 landrace rice and ten wild rice samples. The phylogenetic tree and results of ancestry inference study clearly showed that the genetic distance of Korean weedy rice was far from the wild rice and near with cultivated rice. Furthermore, 537 genes showed evidence of recent positive or divergent selection, consistent with some adaptive traits. This study indicates that Korean weedy rice originated from hybridization of modern indica/indica or japonica/japonica rather than wild rice. Moreover, weedy rice is not only a notorious weed in rice fields, but also contains many untapped valuable traits or haplotypes that may be a useful genetic resource for improving cultivated rice.


Assuntos
Metagenômica/métodos , Oryza/genética , DNA de Plantas/genética , Genoma de Planta/genética , Hibridização Genética , Filogenia
18.
Proc Natl Acad Sci U S A ; 111(26): E2731-40, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24979788

RESUMO

Penile erection is a neurovascular phenomenon, and erectile dysfunction (ED) is caused mainly by vascular risk factors or diseases, neurologic abnormalities, and hormonal disturbances. Men with diabetic ED often have severe endothelial dysfunction and peripheral nerve damage, which result in poor response to oral phosphodiesterase-5 inhibitors. Nerve injury-induced protein 1 (Ninjurin 1, Ninj1) is known to be involved in neuroinflammatory processes and to be related to vascular regression during the embryonic period. Here, we demonstrate in streptozotocin-induced diabetic mice that inhibition of the Ninj1 pathway by administering Ninj1-neutralizing antibody (Ninj1-Ab) or by using Ninj1-knockout mice successfully restored erectile function through enhanced penile angiogenesis and neural regeneration. Angiopoietin-1 (Ang1) expression was down-regulated and angiopoietin-2 expression was up-regulated in the diabetic penis compared with that in controls, and these changes were reversed by treatment with Ninj1-Ab. Ninj1 blockade-mediated penile angiogenesis and neural regeneration as well as recovery of erectile function were abolished by inhibition of Ang1-Tie2 (tyrosine kinase with Ig and epidermal growth factor homology domain-2) signaling with soluble Tie2 antibody or Ang1 siRNA. The present results suggest that inhibition of the Ninj1 pathway will be a novel therapeutic strategy for treating ED.


Assuntos
Anticorpos Neutralizantes/farmacologia , Moléculas de Adesão Celular Neuronais/antagonistas & inibidores , Complicações do Diabetes/tratamento farmacológico , Disfunção Erétil/tratamento farmacológico , Neovascularização Fisiológica/fisiologia , Fatores de Crescimento Neural/antagonistas & inibidores , Regeneração Nervosa/fisiologia , Ereção Peniana/fisiologia , Análise de Variância , Angiopoietina-1/metabolismo , Animais , Western Blotting , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/imunologia , Primers do DNA/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Neovascularização Fisiológica/efeitos dos fármacos , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Regeneração Nervosa/efeitos dos fármacos , Análise de Sequência com Séries de Oligonucleotídeos , Ereção Peniana/efeitos dos fármacos , Receptor TIE-2/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
BMC Genomics ; 17: 408, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27229151

RESUMO

BACKGROUND: Rice germplasm collections continue to grow in number and size around the world. Since maintaining and screening such massive resources remains challenging, it is important to establish practical methods to manage them. A core collection, by definition, refers to a subset of the entire population that preserves the majority of genetic diversity, enhancing the efficiency of germplasm utilization. RESULTS: Here, we report whole-genome resequencing of the 137 rice mini core collection or Korean rice core set (KRICE_CORE) that represents 25,604 rice germplasms deposited in the Korean genebank of the Rural Development Administration (RDA). We implemented the Illumina HiSeq 2000 and 2500 platform to produce short reads and then assembled those with 9.8 depths using Nipponbare as a reference. Comparisons of the sequences with the reference genome yielded more than 15 million (M) single nucleotide polymorphisms (SNPs) and 1.3 M INDELs. Phylogenetic and population analyses using 2,046,529 high-quality SNPs successfully assigned rice accessions to the relevant rice subgroups, suggesting that these SNPs capture evolutionary signatures that have accumulated in rice subpopulations. Furthermore, genome-wide association studies (GWAS) for four exemplary agronomic traits in the KRIC_CORE manifest the utility of KRICE_CORE; that is, identifying previously defined genes or novel genetic factors that potentially regulate important phenotypes. CONCLUSION: This study provides strong evidence that the size of KRICE_CORE is small but contains high genetic and functional diversity across the genome. Thus, our resequencing results will be useful for future breeding, as well as functional and evolutionary studies, in the post-genomic era.


Assuntos
Cruzamento , Evolução Molecular , Genoma de Planta , Estudo de Associação Genômica Ampla , Genômica/métodos , Oryza/genética , Análise de Sequência de DNA , Variação Genética , Genética Populacional , Mutação INDEL , Polimorfismo de Nucleotídeo Único
20.
Development ; 140(19): 4081-90, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24046321

RESUMO

Blood vessels and neurons grow often side by side. However, the molecular and cellular mechanisms underlying their parallel development remain unclear. Here, we report that a subpopulation of secondary motoneurons extends axons ventrally outside of the neural tubes and rostrocaudally as a fascicle beneath the dorsal aorta (DA) in zebrafish. We tried to clarify the mechanism by which these motoneuron axons grow beneath the DA and found that Vegfc in the DA and Vegfr3 in the motoneurons were essential for the axon growth. Forced expression of either Vegfc in arteries or Vegfr3 in motoneurons resulted in enhanced axon growth of motoneurons over the DA. Both vegfr3 morphants and vegfc morphants lost the alignment of motoneuron axons with DA. In addition, forced expression of two mutant forms of Vegfr3 in motoneurons, potentially trapping endogenous Vegfc, resulted in failure of growth of motoneuron axons beneath the DA. Finally, a vegfr3 mutant fish lacked the motoneuron axons beneath the DA. Collectively, Vegfc from the preformed DA guides the axon growth of secondary motoneurons.


Assuntos
Aorta/citologia , Aorta/metabolismo , Axônios/metabolismo , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fator C de Crescimento do Endotélio Vascular/genética , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa