Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Mol Cancer ; 20(1): 78, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039363

RESUMO

BACKGROUND: Distant metastasis is the major cause of death in patients with colorectal cancer (CRC). Previously, we identified KITENIN as a metastasis-enhancing gene and suggested that the oncogenic KITENIN complex is involved in metastatic dissemination of KITENIN-overexpressing CRC cells. Here, we attempted to find substances targeting the KITENIN complex and test their ability to suppress distant metastasis of CRC. METHODS: We screened a small-molecule compound library to find candidate substances suppressing the KITENIN complex in CRC cells. We selected a candidate compound and examined its effects on the KITENIN complex and distant metastasis through in vitro assays, a molecular docking model, and in vivo tumor models. RESULTS: Among several compounds, we identified DKC1125 (Disintegrator of KITENIN Complex #1125) as the best candidate. DKC1125 specifically suppressed KITENIN gain of function. After binding KH-type splicing regulatory protein (KSRP), DKC1125 degraded KITENIN and Dvl2 by recruiting RACK1 and miRNA-124, leading to the disintegration of the functional KITENIN-KSRP-RACK1-Dvl2 complex. A computer docking model suggested that DKC1125 specifically interacted with the binding pocket of the fourth KH-domain of KSRP. KITENIN-overexpressing CRC cells deregulated certain microRNAs and were resistant to 5-fluorouracil, oxaliplatin, and cetuximab. DKC1125 restored sensitivity to these drugs by normalizing expression of the deregulated microRNAs, including miRNA-124. DKC1125 effectively suppressed colorectal liver metastasis in a mouse model. Interestingly, the combination of DKC1125 with 5-fluorouracil suppressed metastasis more effectively than either drug alone. CONCLUSION: DKC1125 targets the KITENIN complex and could therefore be used as a novel therapeutic to suppress liver metastasis in CRC expressing high levels of KITENIN.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/efeitos dos fármacos , Neoplasias Colorretais/patologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Ligação a RNA/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Transativadores/efeitos dos fármacos , Transativadores/metabolismo , Animais , Antineoplásicos/química , Descoberta de Drogas , Humanos , Camundongos , Simulação de Acoplamento Molecular , Metástase Neoplásica/patologia , Proteínas de Ligação a RNA/antagonistas & inibidores , Transativadores/antagonistas & inibidores
2.
Int J Mol Sci ; 22(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209812

RESUMO

Coupled signaling between bone-forming osteoblasts and bone-resorbing osteoclasts is crucial to the maintenance of bone homeostasis. We previously reported that v-crk avian sarcoma virus CT10 oncogene homolog-like (CrkL), which belongs to the Crk family of adaptors, inhibits bone morphogenetic protein 2 (BMP2)-mediated osteoblast differentiation, while enhancing receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated whether CrkL can also regulate the coupling signals between osteoblasts and osteoclasts, facilitating bone homeostasis. Osteoblastic CrkL strongly decreased RANKL expression through its inhibition of runt-related transcription factor 2 (Runx2) transcription. Reduction in RANKL expression by CrkL in osteoblasts resulted in the inhibition of not only osteoblast-dependent osteoclast differentiation but also osteoclast-dependent osteoblast differentiation, suggesting that CrkL participates in the coupling signals between osteoblasts and osteoclasts via its regulation of RANKL expression. Therefore, CrkL bifunctionally regulates osteoclast differentiation through both a direct and indirect mechanism while it inhibits osteoblast differentiation through its blockade of both BMP2 and RANKL reverse signaling pathways. Collectively, these data suggest that CrkL is involved in bone homeostasis, where it helps to regulate the complex interactions of the osteoblasts, osteoclasts, and their coupling signals.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Remodelação Óssea/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Animais Recém-Nascidos , Diferenciação Celular/genética , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos ICR , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/genética
3.
Cancer Sci ; 111(9): 3268-3278, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32533590

RESUMO

Fibroblast growth factor receptor 4 (FGFR4) is known to induce cancer cell proliferation, invasion, and antiapoptosis through activation of RAS/RAF/ERK and PI3K/AKT pathways, which are also known as major molecular bases of colon cancer carcinogenesis related with epidermal growth factor receptor (EGFR) signaling. However, the interaction between FGFR4 and EGFR signaling in regard to colon cancer progression is unclear. Here, we investigated a potential cross-talk between FGFR4 and EGFR, and the effect of anti-EGFR therapy in colon cancer treatment. To explore the biological roles of FGFR4 in cancer progression, RNA sequencing was carried out using FGFR4 transfected colon cell lines. Gene ontology data showed the upregulation of genes related to EGFR signaling, and we identified that FGFR4 overexpression secretes EGFR ligands such as amphiregulin (AREG) with consequent activation of EGFR and ErbB3. This result was also shown in in vivo study and the cooperative interaction between EGFR and FGFR4 promoted tumor growth. In addition, FGFR4 overexpression reduced cetuximab-induced cytotoxicity and the combination of FGFR4 inhibitor (BLU9931) and cetuximab showed profound antitumor effect compared to cetuximab alone. Clinically, we found the positive correlation between FGFR4 and AREG expression in tumor tissue, but not in normal tissue, from colon cancer patients and these expressions were significantly correlated with poor overall survival in patients treated with cetuximab. Therefore, our results provide the novel mechanism of FGFR4 in connection with EGFR activation and the combination of FGFR4 inhibitor and cetuximab could be a promising therapeutic option to achieve the optimal response to anti-EGFR therapy in colon cancer.


Assuntos
Anfirregulina/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Linhagem Celular Tumoral , Cetuximab/farmacologia , Neoplasias do Colo/patologia , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
4.
J Immunol ; 200(5): 1661-1670, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29378912

RESUMO

Endoplasmic reticulum (ER) stress is triggered by various metabolic factors, such as cholesterol and proinflammatory cytokines. Recent studies have revealed that ER stress is closely related to skeletal disorders, such as osteoporosis. However, the precise mechanism by which ER stress regulates osteoclast differentiation has not been elucidated. In this study, we identified an ER-bound transcription factor, cAMP response element-binding protein H (CREBH), as a downstream effector of ER stress during RANKL-induced osteoclast differentiation. RANKL induced mild ER stress and the simultaneous accumulation of active nuclear CREBH (CREBH-N) in the nucleus during osteoclastogenesis. Overexpression of CREBH-N in osteoclast precursors enhanced RANKL-induced osteoclast formation through NFATc1 upregulation. Inhibiting ER stress using a specific inhibitor attenuated the expression of osteoclast-related genes and CREBH activation. In addition, inhibition of reactive oxygen species using N-acetylcysteine attenuated ER stress, expression of osteoclast-specific marker genes, and RANKL-induced CREBH activation. Furthermore, inhibition of ER stress and CREBH signaling pathways using an ER stress-specific inhibitor or CREBH small interfering RNAs prevented RANKL-induced bone destruction in vivo. Taken together, our results suggest that reactive oxygen species/ER stress signaling-dependent CREBH activation plays an important role in RANKL-induced osteoclastogenesis. Therefore, inactivation of ER stress and CREBH signaling pathways may represent a new treatment strategy for osteoporosis.


Assuntos
Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Retículo Endoplasmático/metabolismo , Osteoclastos/metabolismo , Osteoclastos/fisiologia , Osteogênese/fisiologia , Ligante RANK/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia
5.
Cancer Cell Int ; 19: 171, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297035

RESUMO

BACKGROUND: Caveolin-1 (Cav-1) plays an important role in the development of various human cancers. We investigated the relationship between Cav-1 expression and non-small cell lung cancer (NSCLC) progression in the context of brain metastasis (BM). METHODS: Cav-1 expression was investigated in a series of 102 BM samples and 49 paired primary NSCLC samples, as well as 162 unpaired primary NSCLC samples with (63 cases) or without (99 cases) metastasis to distant organs. Human lung cancer cell lines were used for in vitro functional analysis. RESULTS: High Cav-1 expression in tumor cells was observed in 52% (38/73) of squamous cell carcinomas (SQCs) and 33% (45/138) of non-SQCs. In SQC, high Cav-1 expression was increased after BM in both paired and unpaired samples of lung primary tumors and BM (53% vs. 84% in paired samples, P = 0.034; 52% vs. 78% in unpaired samples, P = 0.020). Although the difference in median overall survival in patients NSCLC was not statistically significant, high Cav-1 expression in tumor cells (P = 0.005, hazard ratio 1.715, 95% confidence index 1.175-2.502) was independent prognostic factors of overall survival on multivariate Cox regression analyses, in addition to the presence of BM and non-SQC type. In vitro assays revealed that Cav-1 knockdown inhibited the invasion and migration of lung cancer cells. Genetic modulation of Cav-1 was consistently associated with SNAIL up- and down-regulation. These findings were supported by increased SNAIL and Cav-1 expression in BM samples of SQC. CONCLUSIONS: Cav-1 plays an important role in the BM of NSCLC, especially in SQC. The mechanism may be linked to SNAIL regulation.

6.
Cell Mol Neurobiol ; 39(6): 769-782, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31011939

RESUMO

In malignant gliomas, invasive phenotype and cancer stemness promoting resurgence of residual tumor cells render treatment very difficult. Hence, identification of epithelial-mesenchymal transition (EMT) factors associated with invasion and stemness of glioma cells is critical. To address the issue, we investigated several EMT factors in hypermotile U87MG and U251 cells, orthotopic mouse glioma model, and human glioma samples. Of several EMT markers, SLUG expression was notably increased at the invasive fronts of gliomas, both in mouse tumor grafts and human glioma samples. The biological role played by SLUG was investigated using a colony-forming assay after chemotherapy and irradiation, and by employing a neurosphere culture assay. The effect of SLUG on glioma progression was examined in our patient cohort and samples, and compared to large public data from the REMBRANDT and TCGA. Genetic upregulation of SLUG was associated with increased levels of stemness factors and enhanced resistance to radiation and temozolomide. In our cohort, patients exhibiting lower-level SLUG expression evidenced longer progression-free survival (P = 0.042). Also, in the REMBRANDT dataset, a group in which SLUG was downregulated exhibited a significant survival benefit (P < 0.001). Although paired glioblastoma samples from our patients did not show a significant increase of SLUG expression, increased mRNA levels of SLUG were found in recurrent glioblastoma from TCGA (P = 0.052), and in temozolomide-treated glioma cells and mouse tumor grafts. SLUG may contribute to glioma progression by controlling invasion at infiltrating margins, associated with increased stemness and therapeutic resistance.


Assuntos
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Glioma/metabolismo , Glioma/patologia , Fatores de Transcrição da Família Snail/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Movimento Celular , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , Masculino , Camundongos Endogâmicos C57BL , Invasividade Neoplásica , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fatores de Transcrição da Família Snail/genética , Esferoides Celulares/patologia , Análise de Sobrevida
7.
J Nanosci Nanotechnol ; 19(2): 1166-1171, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30360226

RESUMO

ErbB4/KITENIN signaling plays a role in epidermal growth factor receptor (EGFR)-independent EGF pathways mediating the invasiveness and tumorigenesis of colorectal cancer cells. However, whether alterations in ErbB4/KITENIN signaling play a role in the resistance to anti-EGFR therapy remains unclear. Here, we established cetuximab-resistant DLD1 and HT29 cells, and analyzed changes in ErbB4/KITENIN signaling. c-Jun, a final effector in ErbB4/KITENIN-mediated signaling, was upregulated, whereas KITENIN levels remained constant in both cetuximab-resistant cell lines. The phosphorylation of EGFR and ErbB4 was increased in cetuximab-resistant cells, suggesting that ErbB4/KITENIN signaling contributed to the acquisition of cetuximab resistance in the cells. Silencing of KITENIN and/or ErbB4 increased cetuximab sensitivity in cetuximab-resistant cells. This study is the first to report the activation of ErbB4/KITENIN-mediated signaling in cetuximab-resistant colorectal cancer cells and the potential clinical application of ErbB4/KITENIN-targeting therapy for overcoming anti-EGFR resistance.


Assuntos
Antineoplásicos , Proteínas de Transporte/metabolismo , Cetuximab/farmacologia , Neoplasias Colorretais , Proteínas de Membrana/metabolismo , Receptor ErbB-4/metabolismo , Antineoplásicos/farmacologia , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Proteínas de Membrana/genética , Receptor ErbB-4/genética , Transdução de Sinais
8.
Int J Mol Sci ; 20(11)2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31141929

RESUMO

Deoxypodophyllotoxin (DPT) is a cyclolignan compound that exerts anti-cancer effects against various types of cancers. DPT induces apoptosis and inhibits the growth of breast, brain, prostate, gastric, lung, and cervical tumors. In this study, we sought to determine the effect of DPT on cell proliferation, apoptosis, motility, and tumorigenesis of three colorectal cancer (CRC) cell lines: HT29, DLD1, and Caco2. DPT inhibited the proliferation of these cells. Specifically, the compound-induced mitotic arrest in CRC cells by destabilizing microtubules and activating the mitochondrial apoptotic pathway via regulation of B-cell lymphoma 2 (Bcl-2) family proteins (increasing Bcl-2 associated X (BAX) and decreasing B-cell lymphoma-extra-large (Bcl-xL)) ultimately led to caspase-mediated apoptosis. In addition, DPT inhibited tumorigenesis in vitro, and in vivo skin xenograft experiments revealed that DPT significantly decreased tumor size and tumor weight. Taken together, our results suggest DPT to be a potent compound that is suitable for further exploration as a novel chemotherapeutic for human CRC.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Podofilotoxina/análogos & derivados , Moduladores de Tubulina/farmacologia , Animais , Antineoplásicos/uso terapêutico , Células CACO-2 , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas , Células HT29 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Podofilotoxina/farmacologia , Podofilotoxina/uso terapêutico , Moduladores de Tubulina/uso terapêutico
9.
J Immunol ; 196(3): 1123-31, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26695370

RESUMO

Rac1, a member of small GTPases, is a key regulator of osteoclast differentiation and function. The Crk family adaptor proteins, consisting of Src homology (SH) 2 and SH3 protein-binding domains, regulate cell proliferation, migration, and invasion through Rac1 activation. In this study, we examined the role of CrkII in osteoclast differentiation and function. Retroviral overexpression of CrkII in osteoclast precursors enhanced osteoclast differentiation and resorptive function through Rac1 activation. The knockdown of CrkII in osteoclast precursors using small interfering RNA inhibited osteoclast differentiation and its resorption activity. Unlike wild-type CrkII, overexpression of the three SH domains in mutant forms of CrkII did not enhance either osteoclast differentiation or function. Phosphorylation of p130 Crk-associated substrate (p130Cas) by osteoclastogenic cytokines in preosteoclasts increased the interaction between p130Cas and CrkII, which is known to be involved in Rac1 activation. Furthermore, transgenic mice overexpressing CrkII under control of a tartrate-resistant acid phosphatase promoter exhibited a low bone mass phenotype, associated with increased resorptive function of osteoclasts in vivo. Taken together, our data suggest that the p130Cas/CrkII/Rac1 signaling pathway plays an important role in osteoclast differentiation and function, both in vitro and in vivo.


Assuntos
Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Proteínas Proto-Oncogênicas c-crk/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Proteína Substrato Associada a Crk/metabolismo , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Transgênicos , Osteoclastos/citologia , Ligante RANK/metabolismo , RNA Interferente Pequeno , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção , Microtomografia por Raio-X
10.
Molecules ; 23(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441806

RESUMO

Lichens produce various unique chemicals that are used in the pharmaceutical industry. To screen for novel lichen secondary metabolites that inhibit the stemness potential of colorectal cancer cells, we tested acetone extracts of 11 lichen samples collected in Chile. Tumidulin, isolated from Niebla sp., reduced spheroid formation in CSC221, DLD1, and HT29 cells. In addition, mRNA expressions and protein levels of cancer stem markers aldehyde dehydrogenase-1 (ALDH1), cluster of differentiation 133 (CD133), CD44, Lgr5, and Musashi-1 were reduced after tumidulin treatment. Tumidulin decreased the transcriptional activity of the glioma-associated oncogene homolog zinc finger protein (Gli) promoter in reporter assays, and western blotting confirmed decreased Gli1, Gli2, and Smoothened (SMO) protein levels. Moreover, the tumidulin activity was not observed in the presence of Gli and SMO inhibitors. Together, these results demonstrate for the first time that tumidulin is a potent inhibitor of colorectal cancer cell stemness.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Líquens/química , Células-Tronco Neoplásicas/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Biomarcadores , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
11.
Mol Carcinog ; 56(2): 664-680, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27377703

RESUMO

Aberrant expression of urokinase-type plasminogen activator receptor (uPAR) has been observed in human gastric cancers. Prostaglandin E2 (PGE2 ), whose biosynthesis is catalyzed by cyclooxygenase-2 (COX-2), is implicated in cancer metastasis; however, the cellular and molecular mechanisms of PGE2 -driven uPAR expression are yet to be elucidated in human gastric cancer AGS cells. In this study, we showed that PGE2 induces uPAR expression in concentration- and time-dependent manners. Furthermore, using antagonists and siRNA, we found that among the four subtypes of PGE2 receptors, EP2 receptors are involved in PGE2 -induced uPAR expression. PGE2 induced the activation of Src, epidermal growth factor receptor (EGFR), c-Jun NH2 -terminal kinase (JNK), extracellular signal-regulated kinase (Erk), and p38 mitogen activated protein kinase (p38 MAPK). Specific inhibitor and mutagenesis studies showed that Src, EGFR, JNK1/2, and Erk1/2 are involved in PGE2 -induced uPAR expression. PGE2 induces EP2-dependent phosphorylation of Src, while the activation of Src-dependent EGFR leads to the phosphorylation of JNK1/2 and Erk1/2. Deletion and site-directed mutagenesis studies demonstrated the involvement of transcription factor activator protein (AP)-1 and nuclear factor-kappa B (NF-κB) in PGE2 -induced uPAR expression. EGFR-dependent MAPKs (JNK1/2 and Erk1/2) function as the upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. AGS cells pre-treated with PGE2 showed remarkably enhanced invasiveness, which was partially abrogated by uPAR-neutralizing antibodies. To the best of our knowledge, this is the first report that PGE2 -induced uPAR expression, which stimulates invasiveness of human gastric cancer AGS cells, is mediated by the EP2 receptor-dependent Src/EGFR/JNK1/2, Erk1/2/AP-1, and Src/EGFR/JNK1/2, Erk1/2/NF-κB cascades. © 2016 Wiley Periodicals, Inc.


Assuntos
Dinoprostona/metabolismo , Receptores de Prostaglandina E Subtipo EP2/metabolismo , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Transdução de Sinais , Neoplasias Gástricas/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , NF-kappa B/metabolismo , Estômago/patologia , Neoplasias Gástricas/patologia , Fator de Transcrição AP-1/metabolismo
12.
Mol Carcinog ; 56(3): 1068-1081, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27648936

RESUMO

Understanding the complex biological functions of E3-ubiquitin ligases may facilitate the development of mechanism-based anti-cancer drugs. We recently identified that the KITENIN/ErbB4-Dvl2-c-Jun axis works as a novel unconventional downstream signal of epidermal growth factor (EGF) in colorectal cancer (CRC) tissues. Here we addressed whether E3-ubiquitin ligases are required for operation of this axis. We found that Nrdp1, an E3-ligase for ErbB3/ErbB4, interacted with KITENIN (KAI1 C-terminal interacting tetraspanin) to form a functional KITENIN/ErbB4/Nrdp1 complex and is responsible for down-regulating Dvl2 within this complex. Interestingly, ErbB4 was resistant to degradation by Nrdp1 in KITENIN/Nrdp1-co-transfected CRC cells, and KITENIN bound to the C-terminal coiled-coil domain of Nrdp1. Chemical blockade of ErbB kinase did not block the action of EGF to increase in total/phospho-ErbB4 and phospho-ERK in KITENIN/ErbB4-cotransfected cells, whereas it blocked the action of EGF in ErbB4 alone-transfected CRC cells. In human CRC tissues, higher expressions of ErbB4 and KITENIN and lower expression of Dvl2 was observed in stage IV samples than in stage I, but a low level of Nrdp1 was expressed in both stages and it did not differ significantly by stage. These results indicated that Nrdp1 is necessary for the reduction in Dvl2 to generate c-Jun in the EGF-KITENIN/ErbB4-c-Jun axis, but more importantly, elevated KITENIN protects KITENIN-bound ErbB4 from Nrdp1-mediated degradation via physical collaboration between the KITENIN/ErbB4 complex and Nrdp1, but not via modulation of ErbB kinase activity. Thus, KITENIN functions in the maintenance of a higher expression level of ErbB4 in advanced CRC tissues, independent of ubiquitin-mediated degradation via Nrdp1. © 2016 Wiley Periodicals, Inc.


Assuntos
Proteínas de Transporte/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Membrana/metabolismo , Receptor ErbB-4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células CACO-2 , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Proteínas de Membrana/genética , Estadiamento de Neoplasias , Fosforilação , Proteólise , Receptor ErbB-4/genética
13.
BMC Cancer ; 17(1): 583, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851312

RESUMO

BACKGROUND: Epithelial-mesenchymal transition (EMT), principally involving an E-cadherin to N-cadherin shift, linked to tumor invasion or metastasis, and therapeutic resistance in various human cancer. A growing body of recent evidence has supported the hypothesis that EMT play a crucial role in the invasive phenotype of gliomas. To evaluate the prognostic connotation of EMT traits in glioma, expression of E-cadherin and N-cadherin was explored in a large series of glioma patients in relation to patient survival rate. METHODS: Expressions of E- and N-cadherin were examined using immunohistochemical analysis in 92 glioma cases diagnosed at our hospital. These markers expressions were also explored in 21 cases of fresh frozen glioma samples and in glioma cell lines by Western blot analysis. RESULTS: Expression of E-cadherin was observed in eight cases (8.7%) with weak staining intensity in the majority of the immunoreactive cases (7/8). Expression of N-cadherin was identified in 81 cases (88.0%) with high expression in 64 cases (69.5%). Fresh frozen tissue samples and glioma cell lines showed similar results by Western blot analysis. There was no significant difference in either overall survival (OS) or progression-free survival (PFS) according to E-cadherin expression (P > 0.05). Although the OS rates were not affected by N-cadherin expression levels (P = 0.138), PFS increased in the low N-cadherin expression group with marginal significance (P = 0.058). The survival gains based on N-cadherin expression levels were significantly augmented in a larger series of publicly available REMBRANDT data (P < 0.001). CONCLUSIONS: E- and N-cadherin, as representative EMT markers, have limited prognostic value in glioma. Nonetheless, the EMT process in gliomas may be compounded by enhanced N-cadherin expression supported by unfavorable prognostic outcomes.


Assuntos
Antígenos CD/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Glioma/metabolismo , Glioma/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Criança , Pré-Escolar , Intervalo Livre de Doença , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Gradação de Tumores , Prognóstico , Análise Serial de Tecidos , Adulto Jovem
14.
Int J Mol Sci ; 18(9)2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862656

RESUMO

Bromopropane (BP) compounds, including 1-bromopropane, 2-bromopropane, and 1,2-dibromopropane, are used in industry for various purposes, and their deleterious effects on human health are becoming known. In this study, we examined the effects of BP compounds on the stemness of colorectal cancer cells. At low, non-cytotoxic concentrations, BP compounds significantly increased spheroid formation in CSC221, DLD1, Caco2, and HT29 cells. In addition, the levels of cancer stem cell markers, such as aldehyde dehydrogenase-1, cluster of differentiation 133 (CD133), CD44, Lgr5, Musashi-1, Ephrin receptor, and Bmi-1 increased after exposure to BP compounds. BP compounds increased the transcriptional activity of the TOPflash and glioma-associated oncogene homolog zinc finger protein (Gli) promoters in reporter assays and increased the expression of Gli-1, Gli-2, Smoothened (SMO), and ß-catenin by RT-PCR. These results demonstrate for the first time that BP compounds have the potential to promote cancer stemness.


Assuntos
Carcinógenos/farmacologia , Neoplasias Colorretais/induzido quimicamente , Células-Tronco Neoplásicas/efeitos dos fármacos , Células CACO-2 , Carcinógenos/toxicidade , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Hidrocarbonetos Bromados/farmacologia , Hidrocarbonetos Bromados/toxicidade , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/patologia
15.
Int J Mol Sci ; 18(12)2017 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-29207493

RESUMO

Glycoprotein 90K (also known as LGALS3BP or Mac-2BP) is a tumor-associated protein, and high 90K levels are associated with poor prognosis in some cancers. To clarify the role of 90K as an indicator for poor prognosis and metastasis in epithelial cancers, the present study investigated the effect of 90K on an adherens junctional protein, E-cadherin, which is frequently absent or downregulated in human epithelial cancers. Treatment of certain cancer cells with 90K significantly reduced E-cadherin levels in a cell-population-dependent manner, and these cells showed decreases in cell adhesion and increases in invasive cell motility. Mechanistically, 90K-induced E-cadherin downregulation occurred via ubiquitination-mediated proteasomal degradation. 90K interacted with the E-cadherin-p120-catenin complex and induced its dissociation, altering the phosphorylation status of p120-catenin, whereas it did not associate with ß-catenin. In subconfluent cells, 90K decreased membrane-localized p120-catenin and the membrane fraction of the p120-catenin. Particularly, 90K-induced E-cadherin downregulation was diminished in p120-catenin knocked-down cells. Taken together, 90K upregulation promotes the dissociation of the E-cadherin-p120-catenin complex, leading to E-cadherin proteasomal degradation, and thereby destabilizing adherens junctions in less confluent tumor cells. Our results provide a potential mechanism to explain the poor prognosis of cancer patients with high serum 90K levels.


Assuntos
Antígenos de Neoplasias/metabolismo , Biomarcadores Tumorais/metabolismo , Caderinas/metabolismo , Proteínas de Transporte/metabolismo , Cateninas/metabolismo , Glicoproteínas/metabolismo , Neoplasias/metabolismo , Antígenos CD , Células CACO-2 , Cateninas/genética , Adesão Celular , Contagem de Células , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Células MCF-7 , Masculino , Invasividade Neoplásica , Fosforilação , Prognóstico , Proteólise , delta Catenina
16.
Molecules ; 22(3)2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28335402

RESUMO

2-Hydroxymelatonin is a predominant hydroxylated melatonin metabolite in plants. To investigate whether it has potent cytotoxic effects on colorectal cancer cells, four colorectal cancer cell lines, Caco2, HCT116, DLD1, and CT26, were treated with 2-hydroxymelatonin and melatonin. 2-Hydroxymelatonin had a much lower IC50 value than melatonin in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cytotoxic effect of 2-hydroxymelatonin was much stronger than that of melatonin at high concentrations (1000 or 2000 µM) in HCT116, DLD1, and CT26 cells, but only at intermediate concentrations (250 or 500 µM) in Caco2 cells. The cytotoxicity of 2-hydroxymelatonin was induced through activation of the apoptotic signaling pathway, as confirmed by Hoechst staining and Annexin V-FITC/propidium iodide double labeling of cells treated with a lethal dose (1 mM). However, sub-lethal doses of 2-hydroxymelatonin inhibited the invasive ability of Caco2 cells. Epithelial-mesenchymal transition (EMT) markers were significantly regulated by 2-hydroxymelatonin. Overall, the anti-cancer activity of 2-hydroxymelatonin is more potent than that of melatonin. Taken together, 2-hydroxymelatonin exhibits potent anti-cancer activity against human colorectal cancer cells via induction of apoptosis and inhibition of EMT.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Colorretais/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Melatonina/análogos & derivados , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Ensaios de Seleção de Medicamentos Antitumorais , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Melatonina/farmacologia , Transdução de Sinais/efeitos dos fármacos
17.
Neurobiol Dis ; 87: 19-28, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704708

RESUMO

In neurodegenerative diseases like AD, tau forms neurofibrillary tangles, composed of tau protein. In the AD brain, activated caspases cleave tau at the 421th Asp, generating a caspase-cleaved form of tau, TauC3. Although TauC3 is known to assemble rapidly into filaments in vitro, a role of TauC3 in vivo remains unclear. Here, we generated a transgenic mouse expressing human TauC3 using a neuron-specific promoter. In this mouse, we found that human TauC3 was expressed in the hippocampus and cortex. Interestingly, TauC3 mice showed drastic learning and spatial memory deficits and reduced synaptic density at a young age (2-3months). Notably, tau oligomers as well as tau aggregates were found in TauC3 mice showing memory deficits. Further, i.p. or i.c.v. injection with methylene blue or Congo red, inhibitors of tau aggregation in vitro, and i.p. injection with rapamycin significantly reduced the amounts of tau oligomers in the hippocampus, rescued spine density, and attenuated memory impairment in TauC3 mice. Together, these results suggest that TauC3 facilitates early memory impairment in transgenic mice accompanied with tau oligomer formation, providing insight into the role of TauC3 in the AD pathogenesis associated with tau oligomers and a useful AD model to test drug candidates.


Assuntos
Caspases/metabolismo , Transtornos da Memória/metabolismo , Proteínas tau/metabolismo , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Aprendizagem da Esquiva/fisiologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Linhagem Celular Tumoral , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Espinhas Dendríticas/patologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/patologia , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Nootrópicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia , Sirolimo/farmacologia , Memória Espacial/efeitos dos fármacos , Memória Espacial/fisiologia , Proteínas tau/genética
18.
BMC Complement Altern Med ; 16(1): 288, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527352

RESUMO

BACKGROUND: Recent studies report that inflammatory diseases of the large intestine are associated with colorectal cancer. Geijigajakyak Decoction (GJD) has antispasmodic and anti-inflammatory effects on the gastrointestinal tract. Thus, in light of the connection between chronic bowel inflammation and colorectal cancer (CRC), we asked whether GJD inhibits colorectal tumorigenesis. METHODS: The effects of GJD on the viability and proliferation of CRC cells were evaluated using MTT and BrdU assays, respectively. The motility of CRC cells was examined by a Transwell migration/invasion assay and immunoblot analysis was used to examine the signaling pathways associated with migration. A syngeneic Balb/c mice allograft model, in which CT26 cells were injected into the dorsum, was used to evaluate the anti-tumor effects of GJD in vivo. RESULTS: GJD had no cytotoxic effects against HCT116 CRC cells, although it did inhibit their proliferation. GJD inhibited the migration of HCT116 cells, and suppressed the invasion of HCT116, Caco2, and CSC221 CRC cells. In addition, GJD downregulated the expression of p-JNK and p-p38 MAPK, which are downstream signaling molecules associated with invasiveness. Furthermore, oral administration of GJD (333 mg/kg, twice a day) inhibited tumor growth in a mouse xenograft model. CONCLUSIONS: GJD inhibited the motility of human CRC cells and suppressed tumorigenesis in a mouse model. These results suggest that GJD warrants further study as a potential adjuvant anti-cancer therapy.


Assuntos
Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Animais , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Int J Mol Sci ; 17(10)2016 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-27689991

RESUMO

Emerging evidence supports a fundamental role for microRNAs (miRNA) in regulating cancer metastasis. Recently, microRNA-375 (miR-375) was reported to be downregulated in many types of cancers, including gastric cancer. Increase in the expression of Recepteur d'Origine Nantais (RON), a receptor tyrosine kinase, has been reported in tumors. However, the function of miR-375 and RON expression in gastric cancer metastasis has not been sufficiently studied. In silico analysis identified miR-375 binding sites in the 3'-untranslated regions (3'-UTR) of the RON-encoding gene. Expression of miR-375 resulted in reduced activity of a luciferase reporter containing the 3'-UTR fragments of RON-encoding mRNA, confirming that miR-375 directly targets the 3'-UTR of RON mRNA. Moreover, we found that overexpression of miR-375 inhibited mRNA and protein expression of RON, which was accompanied by the suppression of cell proliferation, migration, and invasion in gastric cancer AGS and MKN-28 cells. Ectopic miR-375 expression also induced G1 cell cycle arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of retinoblastoma (Rb). Knockdown of RON by RNAi, similar to miR-375 overexpression, suppressed tumorigenic properties and induced G1 arrest through a decrease in the expression of cyclin D1, cyclin D3, and in the phosphorylation of Rb. Thus, our study provides evidence that miR-375 acts as a suppressor of metastasis in gastric cancer by targeting RON, and might represent a new potential therapeutic target for gastric cancer.

20.
Mol Cell Biochem ; 398(1-2): 147-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25234193

RESUMO

Piperine, a kind of natural alkaloid found in peppers, has been reported to exhibit anti-oxidative and anti-tumor activities, both in vitro and in vivo. Interleukin-6 (IL-6) is an important cytokine that activates the signal transduction, promotes tumor cell metastasis, and induces malignancy, including in gastric cancer. However, the effects of piperine on IL-6 expression in gastric cancer cells have not yet been well defined. In this study, we investigated the effects of piperine on the IL-6 expression, and examined the underlying signaling pathways via RT-PCR, promoter studies and Western blotting in human gastric cancer TMK-1 cells. Our results showed that piperine inhibited interleukin-1ß (IL-1ß)-induced IL-6 expression in a dose-dependent manner. In addition, piperine also inhibited IL-6 promoter activity. Experiments with mitogen-activated protein kinase (MAPK) inhibitors and dominant negative mutant p38 MAPK indicated that p38 MAPK was essential for IL-6 expression in the TMK-1 cells. Additionally, signal transducer and activator of transcription 3 (STAT3) was also involved in the IL-1ß-induced IL-6 expression in gastric cancer cells. Piperine inhibited IL-1ß-induced p38 MAPK and STAT3 activation and, in turn, blocked the IL-1ß-induced IL-6 expression. Furthermore, gastric cancer cells pretreated with IL-1ß showed markedly enhanced invasiveness, which was partially abrogated by treatment with IL-6 siRNA, piperine, and inhibitors of p38 MAPK and STAT3. These results suggest that piperine may exert at least part of its anti-cancer effect by controlling IL-6 expression through the suppression of p38 MAPK and STAT3.


Assuntos
Alcaloides/farmacologia , Benzodioxóis/farmacologia , Interleucina-1beta/farmacologia , Interleucina-6/metabolismo , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Fator de Transcrição STAT3/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Interleucina-6/genética , Mutação , Invasividade Neoplásica , Piridinas/farmacologia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , UDPglucose 4-Epimerase/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases p38 Ativadas por Mitógeno/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa