Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 94(3): 951-86, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24987009

RESUMO

Much is known about the mechanotransducer (MT) channels mediating transduction in hair cells of the vertrbrate inner ear. With the use of isolated preparations, it is experimentally feasible to deliver precise mechanical stimuli to individual cells and record the ensuing transducer currents. This approach has shown that small (1-100 nm) deflections of the hair-cell stereociliary bundle are transmitted via interciliary tip links to open MT channels at the tops of the stereocilia. These channels are cation-permeable with a high selectivity for Ca(2+); two channels are thought to be localized at the lower end of the tip link, each with a large single-channel conductance that increases from the low- to high-frequency end of the cochlea. Ca(2+) influx through open channels regulates their resting open probability, which may contribute to setting the hair cell resting potential in vivo. Ca(2+) also controls transducer fast adaptation and force generation by the hair bundle, the two coupled processes increasing in speed from cochlear apex to base. The molecular intricacy of the stereocilary bundle and the transduction apparatus is reflected by the large number of single-gene mutations that are linked to sensorineural deafness, especially those in Usher syndrome. Studies of such mutants have led to the discovery of many of the molecules of the transduction complex, including the tip link and its attachments to the stereociliary core. However, the MT channel protein is still not firmly identified, nor is it known whether the channel is activated by force delivered through accessory proteins or by deformation of the lipid bilayer.


Assuntos
Células Ciliadas Auditivas/fisiologia , Audição/fisiologia , Mecanotransdução Celular , Animais , Humanos
2.
J Neurosci ; 39(23): 4434-4447, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926748

RESUMO

Noise-induced excitotoxicity is thought to depend on glutamate. However, the excitotoxic mechanisms are unknown, and the necessity of glutamate for synapse loss or regeneration is unclear. Despite absence of glutamatergic transmission from cochlear inner hair cells in mice lacking the vesicular glutamate transporter-3 (Vglut3KO ), at 9-11 weeks, approximately half the number of synapses found in Vglut3WT were maintained as postsynaptic AMPA receptors juxtaposed with presynaptic ribbons and voltage-gated calcium channels (CaV1.3). Synapses were larger in Vglut3KO than Vglut3WT In Vglut3WT and Vglut3+/- mice, 8-16 kHz octave-band noise exposure at 100 dB sound pressure level caused a threshold shift (∼40 dB) and a loss of synapses (>50%) at 24 h after exposure. Hearing threshold and synapse number partially recovered by 2 weeks after exposure as ribbons became larger, whereas recovery was significantly better in Vglut3WT Noise exposure at 94 dB sound pressure level caused auditory threshold shifts that fully recovered in 2 weeks, whereas suprathreshold hearing recovered faster in Vglut3WT than Vglut3+/- These results, from mice of both sexes, suggest that spontaneous repair of synapses after noise depends on the level of Vglut3 protein or the level of glutamate release during the recovery period. Noise-induced loss of presynaptic ribbons or postsynaptic AMPA receptors was not observed in Vglut3KO , demonstrating its dependence on vesicular glutamate release. In Vglut3WT and Vglut3+/-, noise exposure caused unpairing of presynaptic ribbons and presynaptic CaV1.3, but not in Vglut3KO where CaV1.3 remained clustered with ribbons at presynaptic active zones. These results suggest that, without glutamate release, noise-induced presynaptic Ca2+ influx was insufficient to disassemble the active zone. However, synapse volume increased by 2 weeks after exposure in Vglut3KO , suggesting glutamate-independent mechanisms.SIGNIFICANCE STATEMENT Hearing depends on glutamatergic transmission mediated by Vglut3, but the role of glutamate in synapse loss and repair is unclear. Here, using mice of both sexes, we show that one copy of the Vglut3 gene is sufficient for noise-induced threshold shift and loss of ribbon synapses, but both copies are required for normal recovery of hearing function and ribbon synapse number. Impairment of the recovery process in mice having only one functional copy suggests that glutamate release may promote synapse regeneration. At least one copy of the Vglut3 gene is necessary for noise-induced synapse loss. Although the excitotoxic mechanism remains unknown, these findings are consistent with the presumption that glutamate is the key mediator of noise-induced synaptopathy.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/fisiologia , Ácido Glutâmico/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Perda Auditiva Provocada por Ruído/fisiopatologia , Sinapses/fisiologia , Envelhecimento/fisiologia , Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Sistemas de Transporte de Aminoácidos Acídicos/genética , Animais , Limiar Auditivo/fisiologia , Cálcio/metabolismo , Potenciais Evocados Auditivos , Exocitose , Feminino , Dosagem de Genes , Genes Reporter , Células Ciliadas Auditivas Externas/fisiologia , Transporte de Íons , Masculino , Camundongos , Camundongos Knockout , Receptores de AMPA/fisiologia , Recuperação de Função Fisiológica , Gânglio Espiral da Cóclea/citologia , Sinapses/ultraestrutura
3.
J Neurosci ; 36(7): 2111-8, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26888923

RESUMO

Auditory nerve excitation and thus hearing depend on spike-generating ion channels and their placement along the axons of auditory nerve fibers (ANFs). The developmental expression patterns and native axonal locations of voltage-gated ion channels in ANFs are unknown. Therefore, we examined the development of heminodes and nodes of Ranvier in the peripheral axons of type I ANFs in the rat cochlea with immunohistochemistry and confocal microscopy. Nodal structures presumably supporting presensory spiking formed between postnatal days 5 (P5) and P7, including Ankyrin-G, NaV1.6, and Caspr. These immature nodal structures lacked low-voltage-activated KV1.1 which was not enriched at juxtaparanodes until approximately P13, concurrent with the developmental onset of acoustic hearing function. Anatomical alignment of ANF spike-initiating heminodes relative to excitatory input from inner hair cell (IHC) ribbon synapses continued until approximately P30. High-voltage-activated KV3.1b and KV2.2 were expressed in mutually exclusive domains: KV3.1b was strictly localized to nodes and heminodes, whereas KV2.2 expression began at the juxtaparanodes and continued centrally along the first internode. At spike-initiating heminodes in the distal osseous spiral lamina, NaV1.1 partly overlapped NaV1.6 and ankyrin-G. ANFs displayed KV7.2 and KV7.3 at heminodes, nodes, internodes, and the unmyelinated synaptic terminal segments beneath IHCs in the organ of Corti. In response to sound, spikes are initiated at the heminode, which is tightly coupled to the IHC ribbon synapse ∼20-40 µm away. These results show that maturation of nodal alignment and ion channel content may underlie postnatal improvements of ANF excitability and discharge synchrony. SIGNIFICANCE STATEMENT: Acoustic and electrical hearing depends on rapid, reliable, and precise spike generation in auditory nerve fibers. A limitation of current models and therapies is a lack of information on the identities and topographies of underlying ion channels. We report the developmental profile of the auditory nerve spike generator with a focus on NaV1.1, NaV1.6, KV1.1, KV2.2, KV3.1b, KV7.2, and KV7.3 in relation to the scaffold ankyrin-G. Molecular anatomy of the spike generator matures in the weeks after developmental onset of hearing function. Subcellular positioning of voltage-gated ion channels will enable multicompartmental modeling of auditory nerve responses elicited by afferent chemical neurotransmission from hair cells and modulated by efferent neurotransmitters or evoked by extracellular field stimulation from a cochlear implant.


Assuntos
Nervo Coclear/fisiologia , Audição/fisiologia , Canais de Potássio/fisiologia , Canais de Sódio/fisiologia , Animais , Anquirinas/genética , Axônios/fisiologia , Cóclea/citologia , Cóclea/crescimento & desenvolvimento , Cóclea/fisiologia , Nervo Coclear/crescimento & desenvolvimento , Feminino , Células Ciliadas Auditivas Internas/fisiologia , Masculino , Fibras Nervosas/fisiologia , Órgão Espiral/crescimento & desenvolvimento , Órgão Espiral/fisiologia , Terminações Pré-Sinápticas/fisiologia , Nós Neurofibrosos/fisiologia , Ratos , Ratos Wistar , Lâmina Espiral/crescimento & desenvolvimento , Lâmina Espiral/fisiologia , Sinapses/fisiologia
4.
eNeuro ; 10(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37221089

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease involving cognitive impairment and abnormalities in speech and language. Here, we examine how AD affects the fidelity of auditory feedback predictions during speaking. We focus on the phenomenon of speaking-induced suppression (SIS), the auditory cortical responses' suppression during auditory feedback processing. SIS is determined by subtracting the magnitude of auditory cortical responses during speaking from listening to playback of the same speech. Our state feedback control (SFC) model of speech motor control explains SIS as arising from the onset of auditory feedback matching a prediction of that feedback onset during speaking, a prediction that is absent during passive listening to playback of the auditory feedback. Our model hypothesizes that the auditory cortical response to auditory feedback reflects the mismatch with the prediction: small during speaking, large during listening, with the difference being SIS. Normally, during speaking, auditory feedback matches its predictions, then SIS will be large. Any reductions in SIS will indicate inaccuracy in auditory feedback prediction not matching the actual feedback. We investigated SIS in AD patients [n = 20; mean (SD) age, 60.77 (10.04); female (%), 55.00] and healthy controls [n = 12; mean (SD) age, 63.68 (6.07); female (%), 83.33] through magnetoencephalography (MEG)-based functional imaging. We found a significant reduction in SIS at ∼100 ms in AD patients compared with healthy controls (linear mixed effects model, F (1,57.5) = 6.849, p = 0.011). The results suggest that AD patients generate inaccurate auditory feedback predictions, contributing to abnormalities in AD speech.


Assuntos
Doença de Alzheimer , Córtex Auditivo , Doenças Neurodegenerativas , Humanos , Feminino , Pessoa de Meia-Idade , Fala/fisiologia , Percepção Auditiva/fisiologia , Córtex Auditivo/fisiologia
5.
BMC Physiol ; 11: 4, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21284860

RESUMO

BACKGROUND: Sodium absorption by Reissner's membrane is thought to contribute to the homeostasis of the volume of cochlear endolymph. It was previously shown that the absorptive transepithelial current was blocked by amiloride and benzamil. The most commonly-observed target of these drugs is the epithelial sodium channel (ENaC), which is composed of the three subunits α-,ß- and γ-ENaC. However, other less-selective cation channels have also been observed to be sensitive to benzamil and amiloride. The aim of this study was to determine whether Reissner's membrane epithelial cells could support parasensory K+ absorption via amiloride- and benzamil-sensitive electrogenic pathways. RESULTS: We determined the molecular and functional expression of candidate cation channels with gene array (GEO GSE6196), RT-PCR, and whole-cell patch clamp. Transcript expression analysis of Reissner's membrane detected no amiloride-sensitive acid-sensing ion channels (ASIC1a, ASIC2a, ASIC2b) nor amiloride-sensitive cyclic-nucleotide gated channels (CNGA1, CNGA2, CNGA4, CNGB3). By contrast, α-,ß- and γ-ENaC were all previously reported as present in Reissner's membrane. The selectivity of the benzamil-sensitive cation currents was observed in whole-cell patch clamp recordings under Cl--free conditions where cations were the only permeant species. The currents were carried by Na+ but not K+, and the permeability of Li+ was greater than that of Na+ in Reissner's membrane. Complete replacement of bath Na+ with the inpermeable cation NMDG+ led to the same inward current as with benzamil in a Na+ bath. CONCLUSIONS: These results are consistent with the amiloride/benzamil-sensitive absorptive flux of Reissner's membrane mediated by a highly Na+-selective channel that has several key characteristics in common with αßγ-ENaC. The amiloride-sensitive pathway therefore absorbs only Na+ in this epithelium and does not provide a parasensory K+ efflux route from scala media.


Assuntos
Cóclea/metabolismo , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/metabolismo , Sódio/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Cóclea/citologia , Células Epiteliais/classificação , Células Epiteliais/citologia , Camundongos , Camundongos Endogâmicos C57BL
6.
Biochem Biophys Res Commun ; 394(2): 434-8, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20226170

RESUMO

Sensory transduction in the cochlea depends on regulated ion secretion and absorption. Results of whole-organ experiments suggested that Reissner's membrane may play a role in the control of luminal Cl(-). We tested for the presence of Cl(-) transport pathways in isolated mouse Reissner's membrane using whole-cell patch clamp recording and gene transcript analyses using RT-PCR. The current-voltage (I-V) relationship in the presence of symmetrical NMDG-Cl was strongly inward-rectifying at negative voltages, with a small outward current at positive voltages. The inward-rectifying component of the I-V curve had several properties similar to those of the ClC-2 Cl(-) channel. It was stimulated by extracellular acidity and inhibited by extracellular Cd2+, Zn2+ and intracellular ClC-2 antibody. Channel transcripts expressed include ClC-2, Slc26a7 and ClC-Ka, but not Cftr, ClC-1, ClCa1, ClCa2, ClCa3, ClCa4, Slc26a9, ClC-Kb, Best1, Best2, Best3 or the beta-subunit of ClC-K, barttin. ClC-2 is the only molecularly-identified channel present that is a strong inward rectifier. This study is the first report of conductive Cl(-) transport in epithelial cells of Reissner's membrane and is consistent with an important role in endolymph anion homeostasis.


Assuntos
Canais de Cloreto/fisiologia , Cóclea/fisiologia , Células Epiteliais/fisiologia , Audição/fisiologia , Animais , Canais de Cloro CLC-2 , Células Cultivadas , Canais de Cloreto/genética , Cloretos/fisiologia , Cóclea/citologia , Endolinfa/fisiologia , Transporte de Íons , Camundongos , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcrição Gênica
7.
Nat Commun ; 11(1): 1102, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32107370

RESUMO

Auditory cortex neurons nonlinearly integrate synaptic inputs from the thalamus and cortex, and generate spiking outputs for simple and complex sounds. Directly comparing synaptic and spiking activity can determine whether this input-output transformation is stimulus-dependent. We employ in vivo whole-cell recordings in the mouse primary auditory cortex, using pure tones and broadband dynamic moving ripple stimuli, to examine properties of functional integration in tonal (TRFs) and spectrotemporal (STRFs) receptive fields. Spectral tuning in STRFs derived from synaptic, subthreshold and spiking responses proves to be substantially more selective than for TRFs. We describe diverse spectral and temporal modulation preferences and distinct nonlinearities, and their modifications between the input and output stages of neural processing. These results characterize specific processing differences at the level of synaptic convergence, integration and spike generation resulting in stimulus-dependent transformation patterns in the primary auditory cortex.


Assuntos
Potenciais de Ação/fisiologia , Córtex Auditivo/fisiologia , Percepção Auditiva/fisiologia , Neurônios/fisiologia , Tálamo/fisiologia , Estimulação Acústica , Animais , Eletrodos Implantados , Feminino , Camundongos , Modelos Neurológicos , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Técnicas Estereotáxicas , Sinapses/fisiologia
8.
J Gen Physiol ; 144(1): 55-69, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24981230

RESUMO

Transmembrane channel-like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after tip link destruction with BAPTA or after attenuating the MT current with GsMTx-4, a peptide toxin we found to block the channels with high affinity. In both cases, the MT channels in outer hair cells (OHCs) of wild-type mice displayed a tonotopic gradient in conductance, with channels from the cochlear base having a conductance (110 pS) nearly twice that of those at the apex (62 pS). This gradient was absent, with channels at both cochlear locations having similar small conductances, with two different Tmc1 mutations. The conductance of MT channels in inner hair cells was invariant with cochlear location but, as in OHCs, was reduced in either Tmc1 mutant. The gradient of OHC conductance also disappeared in Tmc1/Tmc2 double mutants, in which a mechanically sensitive current could be activated by anomalous negative displacements of the hair bundle. This "reversed stimulus-polarity" current was seen with two different Tmc1/Tmc2 double mutants, and with Tmc1/Tmc2/Tmc3 triple mutants, and had a pharmacological sensitivity comparable to that of native MT currents for most antagonists, except dihydrostreptomycin, for which the affinity was less, and for curare, which exhibited incomplete block. The existence in the Tmc1/Tmc2 double mutants of MT channels with most properties resembling those of wild-type channels indicates that proteins other than TMCs must be part of the channel pore. We suggest that an external vestibule of the MT channel may partly account for the channel's large unitary conductance, high Ca(2+) permeability, and pharmacological profile, and that this vestibule is disrupted in Tmc mutants.


Assuntos
Células Ciliadas Auditivas/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/fisiologia , Mutação/genética , Animais , Animais Recém-Nascidos , Cóclea/citologia , Cóclea/efeitos dos fármacos , Cóclea/fisiologia , Curare/farmacologia , Relação Dose-Resposta a Droga , Células Ciliadas Auditivas/efeitos dos fármacos , Mecanotransdução Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos CBA
9.
PLoS One ; 9(5): e97191, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24810589

RESUMO

Several members of the SLC26 gene family have highly-restricted expression patterns in the auditory and vestibular periphery and mutations in mice of at least two of these (SLC26A4 and SLC26A5) lead to deficits in hearing and/or balance. A previous report pointed to SLC26A7 as a candidate gene important for cochlear function. In the present study, inner ears were assayed by immunostaining for Slc26a7 in neonatal and adult mice. Slc26a7 was detected in the basolateral membrane of Reissner's membrane epithelial cells but not neighboring cells, with an onset of expression at P5; gene knockout resulted in the absence of protein expression in Reissner's membrane. Whole-cell patch clamp recordings revealed anion currents and conductances that were elevated for NO3- over Cl- and inhibited by I- and NPPB. Elevated NO3- currents were absent in Slc26a7 knockout mice. There were, however, no major changes to hearing (auditory brainstem response) of knockout mice during early adult life under constitutive and noise exposure conditions. The lack of Slc26a7 protein expression found in the wild-type vestibular labyrinth was consistent with the observation of normal balance. We conclude that SLC26A7 participates in Cl- transport in Reissner's membrane epithelial cells, but that either other anion pathways, such as ClC-2, possibly substitute satisfactorily under the conditions tested or that Cl- conductance in these cells is not critical to cochlear function. The involvement of SLC26A7 in cellular pH regulation in other epithelial cells leaves open the possibility that SLC26A7 is needed in Reissner's membrane cells during local perturbations of pH.


Assuntos
Antiportadores de Cloreto-Bicarbonato/metabolismo , Cóclea/citologia , Células Epiteliais/metabolismo , Membranas/citologia , Animais , Transporte Biológico , Antiportadores de Cloreto-Bicarbonato/deficiência , Antiportadores de Cloreto-Bicarbonato/genética , Cloretos/metabolismo , Cóclea/fisiologia , Feminino , Técnicas de Inativação de Genes , Audição , Masculino , Camundongos , Equilíbrio Postural , Transporte Proteico , Transportadores de Sulfato
10.
J Gen Physiol ; 141(1): 141-8, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23277480

RESUMO

Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel-like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca(2+) permeability along the cochlea's longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1-/-) or Tmc2 (Tmc2-/-). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ~1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1-/- (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca(2+) permeability, P(Ca), of the OHC MT channel decreased from cochlear apex to base. This gradient in P(Ca) was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1-/- mice, P(Ca) in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2-/-, P(Ca) in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca(2+) permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher P(Ca) in IHCs and immature apical OHCs. Changes in P(Ca) with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs.


Assuntos
Cóclea/crescimento & desenvolvimento , Cóclea/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Células Ciliadas Auditivas Externas/fisiologia , Mecanotransdução Celular/fisiologia , Proteínas de Membrana/fisiologia , Estimulação Acústica , Animais , Animais Recém-Nascidos , Cálcio/metabolismo , Cóclea/citologia , Potenciais Evocados Auditivos/fisiologia , Células Ciliadas Auditivas Internas/citologia , Células Ciliadas Auditivas Externas/citologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Modelos Animais , Técnicas de Patch-Clamp
11.
J Gen Physiol ; 142(5): 493-505, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24127526

RESUMO

Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel-like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bundle deflections in mice with null mutations of Tmc1, Tmc2, or both. During the first postnatal week, we observed a normal MT current in hair cells lacking Tmc1 or Tmc2; however, in the absence of both isoforms, we recorded a large MT current that was phase-shifted 180°, being evoked by displacements of the hair bundle away from its tallest edge rather than toward it as in wild-type hair cells. The anomalous MT current in hair cells lacking Tmc1 and Tmc2 was blocked by FM1-43, dihydrostreptomycin, and extracellular Ca(2+) at concentrations similar to those that blocked wild type. MT channels in the double knockouts carried Ca(2+) with a lower permeability than wild-type or single mutants. The MT current in double knockouts persisted during exposure to submicromolar Ca(2+), even though this treatment destroyed the tip links. We conclude that the Tmc isoforms do not themselves constitute the MT channel but are essential for targeting and interaction with the tip link. Changes in the MT conductance and Ca(2+) permeability observed in the absence of Tmc1 mutants may stem from loss of interaction with protein partners in the transduction complex.


Assuntos
Surdez/fisiopatologia , Células Ciliadas Auditivas Externas/fisiologia , Proteínas de Membrana/fisiologia , Órgão Espiral/fisiologia , Animais , Animais Recém-Nascidos , Animais não Endogâmicos , Surdez/genética , Células Ciliadas Auditivas Externas/ultraestrutura , Mecanorreceptores/fisiologia , Mecanorreceptores/ultraestrutura , Potenciais da Membrana/fisiologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos CBA , Camundongos Knockout , Microscopia Eletrônica de Varredura , Modelos Biológicos
12.
Am J Physiol Cell Physiol ; 296(3): C544-57, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19144862

RESUMO

Reissner's membrane epithelium forms much of the barrier that produces and sustains the large ionic differences between cochlear endolymph and perilymph. We have reported that Reissner's membrane contributes to normal cochlear function by absorbing Na(+) from endolymph via amiloride-sensitive channels in gerbil inner ear. We used mouse Reissner's membrane to 1) identify candidate genes involved in the Na(+) transport pathway, 2) determine whether their level of expression was regulated by the synthetic glucocorticoid dexamethasone, and 3) obtain functional evidence for the physiological importance of these genes. Transcripts were present for alpha-, beta-, and gamma-subunits of epithelial Na(+) channel (ENaC); corticosteroid receptors GR (glucocorticoid receptor) and MR (mineralocorticoid receptor); GR agonist regulator 11beta-hydroxysteroid dehydrogenase (HSD) type 1 (11beta-HSD1); Na(+) transport control components SGK1, Nedd4-2, and WNKs; and K(+) channels and Na(+)-K(+)-ATPase. Expression of the MR agonist regulator 11beta-HSD2 was not detected. Dexamethasone upregulated transcripts for alpha- and beta-subunits of ENaC ( approximately 6- and approximately 3-fold), KCNK1 ( approximately 3-fold), 11beta-HSD1 ( approximately 2-fold), SGK1 ( approximately 2-fold), and WNK4 ( approximately 3-fold). Transepithelial currents from the apical to the basolateral side of Reissner's membrane were sensitive to amiloride (IC(50) approximately 0.7 muM) and benzamil (IC(50) approximately 0.1 muM), but not EIPA (IC(50) approximately 34 muM); amiloride-blocked transepithelial current was not immediately changed by forskolin/IBMX. Currents were reduced by ouabain, lowered bath Na(+) concentration (from 150 to 120 mM), and K(+) channel blockers (XE-991, Ba(2+), and acidification from pH 7.4 to 6.5). Dexamethasone-stimulated current and gene expression were reduced by mifepristone, but not spironolactone. These molecular, pharmacological, and functional observations are consistent with Na(+) absorption by mouse Reissner's membrane, which is mediated by apical ENaC and/or other amiloride-sensitive channels, basolateral Na(+)-K(+)-ATPase, and K(+)-permeable channels and is under the control of glucocorticoids. These results provide an understanding and a molecular definition of an important transport function of Reissner's membrane epithelium in the homeostasis of cochlear endolymph.


Assuntos
Dexametasona/farmacologia , Orelha Interna/metabolismo , Endolinfa/metabolismo , Células Epiteliais/efeitos dos fármacos , Canais Epiteliais de Sódio/efeitos dos fármacos , Glucocorticoides/farmacologia , Sódio/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Amilorida/farmacologia , Animais , AMP Cíclico/metabolismo , Orelha Interna/efeitos dos fármacos , Orelha Interna/enzimologia , Complexos Endossomais de Distribuição Requeridos para Transporte , Células Epiteliais/enzimologia , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Perfilação da Expressão Gênica/métodos , Antagonistas de Hormônios/farmacologia , Proteínas Imediatamente Precoces/metabolismo , Potenciais da Membrana , Camundongos , Camundongos Endogâmicos C57BL , Ubiquitina-Proteína Ligases Nedd4 , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Simportadores de Cloreto de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Fatores de Tempo , Ubiquitina-Proteína Ligases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa