Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.270
Filtrar
Mais filtros

Coleção SES
Eixos temáticos
Intervalo de ano de publicação
1.
CA Cancer J Clin ; 73(1): 72-112, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35916666

RESUMO

Sinonasal malignancies make up <5% of all head and neck neoplasms, with an incidence of 0.5-1.0 per 100,000. The outcome of these rare malignancies has been poor, whereas significant progress has been made in the management of other cancers. The objective of the current review was to describe the incidence, causes, presentation, diagnosis, treatment, and recent developments of malignancies of the sinonasal tract. The diagnoses covered in this review included sinonasal undifferentiated carcinoma, sinonasal adenocarcinoma, sinonasal squamous cell carcinoma, and esthesioneuroblastoma, which are exclusive to the sinonasal tract. In addition, the authors covered malignances that are likely to be encountered in the sinonasal tract-primary mucosal melanoma, NUT (nuclear protein of the testis) carcinoma, and extranodal natural killer cell/T-cell lymphoma. For the purpose of keeping this review as concise and focused as possible, sarcomas and malignancies that can be classified as salivary gland neoplasms were excluded.


Assuntos
Carcinoma , Neoplasias do Seio Maxilar , Melanoma , Neoplasias Nasais , Seios Paranasais , Humanos , Carcinoma/diagnóstico , Neoplasias do Seio Maxilar/diagnóstico , Neoplasias do Seio Maxilar/patologia , Cavidade Nasal/patologia , Neoplasias Nasais/diagnóstico , Neoplasias Nasais/epidemiologia , Neoplasias Nasais/terapia , Seios Paranasais/patologia
2.
Nat Immunol ; 17(11): 1252-1262, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27595231

RESUMO

The mammalian cytoplasmic multi-tRNA synthetase complex (MSC) is a depot system that regulates non-translational cellular functions. Here we found that the MSC component glutamyl-prolyl-tRNA synthetase (EPRS) switched its function following viral infection and exhibited potent antiviral activity. Infection-specific phosphorylation of EPRS at Ser990 induced its dissociation from the MSC, after which it was guided to the antiviral signaling pathway, where it interacted with PCBP2, a negative regulator of mitochondrial antiviral signaling protein (MAVS) that is critical for antiviral immunity. This interaction blocked PCBP2-mediated ubiquitination of MAVS and ultimately suppressed viral replication. EPRS-haploid (Eprs+/-) mice showed enhanced viremia and inflammation and delayed viral clearance. This stimulus-inducible activation of MAVS by EPRS suggests an unexpected role for the MSC as a regulator of immune responses to viral infection.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Resistência à Doença/imunologia , Interações Hospedeiro-Patógeno/imunologia , Viroses/imunologia , Viroses/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Animais , Antivirais/farmacologia , Modelos Animais de Doenças , Imunidade Inata , Camundongos , Camundongos Knockout , Peptídeos/farmacologia , Fosforilação , Ligação Proteica , Infecções por Vírus de RNA/imunologia , Infecções por Vírus de RNA/metabolismo , Infecções por Vírus de RNA/virologia , Vírus de RNA/efeitos dos fármacos , Vírus de RNA/imunologia , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Ubiquitinação , Viroses/virologia , Replicação Viral
3.
Cell ; 148(3): 421-33, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304913

RESUMO

Resveratrol, a polyphenol in red wine, has been reported as a calorie restriction mimetic with potential antiaging and antidiabetogenic properties. It is widely consumed as a nutritional supplement, but its mechanism of action remains a mystery. Here, we report that the metabolic effects of resveratrol result from competitive inhibition of cAMP-degrading phosphodiesterases, leading to elevated cAMP levels. The resulting activation of Epac1, a cAMP effector protein, increases intracellular Ca(2+) levels and activates the CamKKß-AMPK pathway via phospholipase C and the ryanodine receptor Ca(2+)-release channel. As a consequence, resveratrol increases NAD(+) and the activity of Sirt1. Inhibiting PDE4 with rolipram reproduces all of the metabolic benefits of resveratrol, including prevention of diet-induced obesity and an increase in mitochondrial function, physical stamina, and glucose tolerance in mice. Therefore, administration of PDE4 inhibitors may also protect against and ameliorate the symptoms of metabolic diseases associated with aging.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Envelhecimento/metabolismo , Restrição Calórica , Transdução de Sinais , Estilbenos/administração & dosagem , 3',5'-AMP Cíclico Fosfodiesterases/química , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Quinases Proteína-Quinases Ativadas por AMP , Tecido Adiposo Branco/efeitos dos fármacos , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Dieta , Intolerância à Glucose/prevenção & controle , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Modelos Moleculares , Músculo Esquelético/efeitos dos fármacos , NAD/metabolismo , Obesidade/prevenção & controle , Proteínas Quinases/metabolismo , Resveratrol , Rolipram/administração & dosagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Sirtuína 1/metabolismo
4.
Nucleic Acids Res ; 51(2): 631-649, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36594163

RESUMO

TRAIP is a key factor involved in the DNA damage response (DDR), homologous recombination (HR) and DNA interstrand crosslink (ICL) repair. However, the exact functions of TRAIP in these processes in mammalian cells are not fully understood. Here we identify the zinc finger protein 212, ZNF212, as a novel binding partner for TRAIP and find that ZNF212 colocalizes with sites of DNA damage. The recruitment of TRAIP or ZNF212 to sites of DNA damage is mutually interdependent. We show that depletion of ZNF212 causes defects in the DDR and HR-mediated repair in a manner epistatic to TRAIP. In addition, an epistatic analysis of Zfp212, the mouse homolog of human ZNF212, in mouse embryonic stem cells (mESCs), shows that it appears to act upstream of both the Neil3 and Fanconi anemia (FA) pathways of ICLs repair. We find that human ZNF212 interacted directly with NEIL3 and promotes its recruitment to ICL lesions. Collectively, our findings identify ZNF212 as a new factor involved in the DDR, HR-mediated repair and ICL repair though direct interaction with TRAIP.


Assuntos
Reparo do DNA , Anemia de Fanconi , Animais , Camundongos , Humanos , Reparo do DNA/genética , Dano ao DNA , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genômica , Anemia de Fanconi/genética , Mamíferos/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Proteínas do Tecido Nervoso/genética
5.
Proc Natl Acad Sci U S A ; 119(30): e2119048119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858411

RESUMO

The major challenges in pancreatic ductal adenocarcinoma (PDAC) management are local or distant metastasis and limited targeted therapeutics to prevent it. To identify a druggable target in tumor secretome and to explore its therapeutic intervention, we performed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomic analysis of tumors obtained from a patient-derived xenograft model of PDAC. Galectin-3 binding protein (Gal-3BP) is identified as a highly secreted protein, and its overexpression is further validated in multiple PDAC tumors and primary cells. Knockdown and exogenous treatment of Gal-3BP showed that it is required for PDAC cell proliferation, migration, and invasion. Mechanistically, we revealed that Gal-3BP enhances galectin-3-mediated epidermal growth factor receptor signaling, leading to increased cMyc and epithelial-mesenchymal transition. To explore the clinical impact of these findings, two antibody clones were developed, and they profoundly abrogated the metastasis of PDAC cells in vivo. Altogether, our data demonstrate that Gal-3BP is an important therapeutic target in PDAC, and we propose its blockade by antibody as a therapeutic option for suppressing PDAC metastasis.


Assuntos
Antígenos de Neoplasias , Antineoplásicos Imunológicos , Biomarcadores Tumorais , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antineoplásicos Imunológicos/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/secundário , Carcinoma Ductal Pancreático/terapia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Cromatografia Líquida , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Proteômica , Secretoma , Espectrometria de Massas em Tandem , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Plant J ; 116(2): 510-523, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37433739

RESUMO

Plant nucleotide-binding domain leucine-rich-repeat receptor (NLR) confers disease resistance to various pathogens by recognizing effectors derived from the pathogen. Previous studies have shown that overexpression of the CC domain in several NLRs triggers cell death, implying that the CC domain plays an important role as a signaling module. However, how CC domain transduces immune signals remains largely unknown. A Potyvirus-resistant NLR protein, Pvr4, possesses a CC domain (CCPvr4 ) that induces cell death upon transient overexpression in Nicotiana benthamiana. In this study, loss-of-function mutants were generated by error-prone PCR-based random mutagenesis to understand the molecular mechanisms underlying CCPvr4 -mediated cell death. Cell biology and biochemical studies revealed that M16 and Q52 in the α1 and α2 helices, respectively, are crucial for protein stability, and mutation of these residues disrupts localization to the plasma membrane and oligomerization activity. The increase of the protein stability of these mutants by tagging a green fluorescent protein (GFP) variant led to restoration of cell death-inducing activity and plasma membrane localization. Another mutant, I7E in the very N-terminal region, lost cell death-inducing activity by weakening the interaction with plasma membrane H+ -ATPase compared to CCPvr4 , although the protein remained in the plasma membrane. Moreover, most of the mutated residues are on the outer surface of the funnel shape in the predicted pentameric CCPvr4 , implying that the disordered N-terminal region plays a crucial role in association with PMA as well as targeting to the plasma membrane. This work could provide insights into the molecular mechanisms of cell death induced by NLR immune receptors.

7.
Neurobiol Dis ; 198: 106548, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825050

RESUMO

BACKGROUND: The association between common neuroradiological markers of multiple sclerosis (MS) and clinical disability is weak. Given that the disability in patients with MS may depend on the underlying structural connectivity of the brain, our study aimed to examine the association between white matter tracts affected by MS and the patients' disability using a new tract density index (TDI). METHOD: This study included 53 patients diagnosed with MS, examined between 2019 and 2020. Manual lesion segmentation was performed on fluid-attenuated inversion recovery (FLAIR) images, and the density of white matter tracts encompassing the lesion (i.e., TDI) was calculated. Correlation analysis was employed to assess the association between TDI and disability. Additionally, the relationship between disability, TDI, and lesion-derived network metrics was examined by computing a partial correlation network. RESULTS: The TDI significantly correlated with the expanded disability status scale (EDSS) (r = 0.30, p = 0.03). Furthermore, the patient's disability is linked solely through TDI to lesion-derived network metrics -a key metric that 'bridges' the gap between the brain lesion and disability. CONCLUSIONS: In this study, MS lesions encompassing regions with high white matter tract density were associated and linked with severe physical disability. These findings indicate that TDI may be an outcome predictor that may connect radiologic findings to clinical practice.


Assuntos
Esclerose Múltipla , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Masculino , Esclerose Múltipla/patologia , Esclerose Múltipla/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Avaliação da Deficiência , Imagem de Tensor de Difusão/métodos , Encéfalo/patologia , Encéfalo/diagnóstico por imagem , Pessoas com Deficiência
8.
Kidney Int ; 105(5): 997-1019, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320721

RESUMO

Toxin- and drug-induced tubulointerstitial nephritis (TIN), characterized by interstitial infiltration of immune cells, frequently necessitates dialysis for patients due to irreversible fibrosis. However, agents modulating interstitial immune cells are lacking. Here, we addressed whether the housekeeping enzyme glutamyl-prolyl-transfer RNA synthetase 1 (EPRS1), responsible for attaching glutamic acid and proline to transfer RNA, modulates immune cell activity during TIN and whether its pharmacological inhibition abrogates fibrotic transformation. The immunological feature following TIN induction by means of an adenine-mixed diet was infiltration of EPRS1high T cells, particularly proliferating T and γδ T cells. The proliferation capacity of both CD4+ and CD8+ T cells, along with interleukin-17 production of γδ T cells, was higher in the kidneys of TIN-induced Eprs1+/+ mice than in the kidneys of TIN-induced Eprs1+/- mice. This discrepancy contributed to the fibrotic amelioration observed in kidneys of Eprs1+/- mice. TIN-induced fibrosis was also reduced in Rag1-/- mice adoptively transferred with Eprs1+/- T cells compared to the Rag1-/- mice transferred with Eprs1+/+ T cells. The use of an EPRS1-targeting small molecule inhibitor (bersiporocin) under clinical trials to evaluate its therapeutic potential against idiopathic pulmonary fibrosis alleviated immunofibrotic aggravation in TIN. EPRS1 expression was also observed in human kidney tissues and blood-derived T cells, and high expression was associated with worse patient outcomes. Thus, EPRS1 may emerge as a therapeutic target in toxin- and drug-induced TIN, modulating the proliferation and activity of infiltrated T cells.


Assuntos
Aminoacil-tRNA Sintetases , Nefrite Intersticial , Insuficiência Renal , Animais , Humanos , Camundongos , Aminoacil-tRNA Sintetases/metabolismo , Linfócitos T CD8-Positivos , Proliferação de Células , Fibrose , Proteínas de Homeodomínio , Nefrite Intersticial/induzido quimicamente , Nefrite Intersticial/genética , Nefrite Intersticial/tratamento farmacológico
9.
Hum Mol Genet ; 31(14): 2424-2437, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181782

RESUMO

Variants in multiple lysosomal enzymes increase Parkinson's disease (PD) risk, including the genes encoding glucocerebrosidase (GCase), acid sphingomyelinase (ASMase) and galactosylceramidase. Each of these enzymes generates ceramide by hydrolysis of sphingolipids in lysosomes, but the role of this common pathway in PD pathogenesis has not yet been explored. Variations in GBA1, the gene encoding GCase, are the most common genetic risk factor for PD. The lysosomal enzyme cathepsin B has recently been implicated as an important genetic modifier of disease penetrance in individuals harboring GBA1 variants, suggesting a mechanistic link between these enzymes. Here, we found that ceramide activates cathepsin B, and identified a novel role for cathepsin B in mediating prosaposin cleavage to form saposin C, the lysosomal coactivator of GCase. Interestingly, this pathway was disrupted in Parkin-linked PD models, and upon treatment with inhibitor of ASMase which resulted in decreased ceramide production. Conversely, increasing ceramide production by inhibiting acid ceramidase activity was sufficient to upregulate cathepsin B- and saposin C-mediated activation of GCase. These results highlight a mechanistic link between ceramide and cathepsin B in regulating GCase activity and suggest that targeting lysosomal ceramide or cathepsin B represents an important therapeutic strategy for activating GCase in PD and related disorders.


Assuntos
Glucosilceramidase , Doença de Parkinson , Catepsina B/genética , Catepsina B/metabolismo , Ceramidas/metabolismo , Glucosilceramidase/genética , Glucosilceramidase/metabolismo , Humanos , Lisossomos/metabolismo , Doença de Parkinson/metabolismo , Saposinas/genética , Saposinas/metabolismo , alfa-Sinucleína/metabolismo
10.
Anal Chem ; 96(22): 8846-8854, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38758170

RESUMO

Despite growing ecological concerns, studies on microplastics and nanoplastics are still in their initial stages owing to technical hurdles in analytical techniques, especially for nanoplastics. We provide an overview of the general attributes of micro/nanoplastics in natural environments and analytical techniques commonly used for their analysis. After demonstrating the analytical challenges associated with the identification of nanoplastics due to their distinctive characteristics, we discuss recent technological advancements for detecting nanoplastics.

11.
Biochem Biophys Res Commun ; 691: 149320, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38043200

RESUMO

HDAC6 has been reported as a deacetylase of p53 at multiple lysine residues, associated with the canonical functions of p53, such as apoptosis and tumor suppression. We have previously reported that p53 acetylation at the lysine 320 site accumulates due to the genetic ablation of HDAC6 in mice liver. However, the biological processes affected by K320 acetylation of p53 are yet to be elucidated. In this study, we demonstrate that K320 acetylation of p53 is regulated by HDAC6 deacetylase activity. HDAC6 knockout mouse brains exhibit a significant accumulation of K320 acetylated p53 compared to other tissues. The level of K320 acetylation of p53 inversely correlates with the level of BNIP3, a direct target of p53 and essential for mitophagy. Notably, overexpressing the deacetylation mimic K320R mutant p53 restored BNIP3 expression in HDAC6 knockout MEFs. Furthermore, we observed that neurons are particularly susceptible to the genetic ablation of HDAC6, impacting BNIP3 expression, which inversely correlates with the accumulation of abnormal mitochondria characterized by swollen cristae. Our findings suggest that HDAC6 plays a crucial role in maintaining BNIP3 expression by deacetylating p53 at the K320 site, which is linked to the structural integrity of mitochondria.


Assuntos
Lisina , Proteína Supressora de Tumor p53 , Camundongos , Animais , Lisina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Processamento de Proteína Pós-Traducional , Neurônios/metabolismo , Mitocôndrias/metabolismo , Camundongos Knockout
12.
Development ; 148(1)2021 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-33234715

RESUMO

The Myostatin/Activin branch of the TGF-ß superfamily acts as a negative regulator of vertebrate skeletal muscle size, in part, through downregulation of insulin/insulin-like growth factor 1 (IGF-1) signaling. Surprisingly, recent studies in Drosophila indicate that motoneuron-derived Activin signaling acts as a positive regulator of muscle size. Here we demonstrate that Drosophila Activin signaling promotes the growth of muscle cells along all three axes: width, thickness and length. Activin signaling positively regulates the insulin receptor (InR)/TORC1 pathway and the level of Myosin heavy chain (Mhc), an essential sarcomeric protein, via increased Pdk1 and Akt1 expression. Enhancing InR/TORC1 signaling in the muscle of Activin pathway mutants restores Mhc levels close to those of the wild type, but only increases muscle width. In contrast, hyperactivation of the Activin pathway in muscles increases overall larval body and muscle fiber length, even when Mhc levels are lowered by suppression of TORC1. Together, these results indicate that the Drosophila Activin pathway regulates larval muscle geometry and body size via promoting InR/TORC1-dependent Mhc production and the differential assembly of sarcomeric components into either pre-existing or new sarcomeric units depending on the balance of InR/TORC1 and Activin signals.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Desenvolvimento Muscular , Receptor de Insulina/metabolismo , Transdução de Sinais , Animais , Retroalimentação Fisiológica , Regulação da Expressão Gênica , Larva/metabolismo , Modelos Biológicos , Músculos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Fosforilação , Proteínas Quinases S6 Ribossômicas/metabolismo , Sarcômeros/metabolismo , Transcrição Gênica , Fator de Crescimento Transformador beta/metabolismo
13.
Small ; 20(1): e2305289, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37649146

RESUMO

Green fuel from water splitting is hardcore for future generations, and the limited source of fresh water (<1%) is a bottleneck. Seawater cannot be used directly as a feedstock in current electrolyzer techniques. Until now single atom catalysts were reported by many synthetic strategies using notorious chemicals and harsh conditions. A cobalt single-atom (CoSA) intruding cobalt oxide ultrasmall nanoparticle (Co3 O4 USNP)-intercalated porous carbon (PC) (CoSA-Co3 O4 @PC) electrocatalyst was synthesized from the waste orange peel as a single feedstock (solvent/template). The extended X-ray absorption fine structure spectroscopy (EXAFS) and theoretical fitting reveal a clear picture of the coordination environment of the CoSA sites (CoSA-Co3 O4 and CoSA-N4 in PC). To impede the direct seawater corrosion and chlorine evolution the seawater has been desalinated (Dseawater) with minimal cost and the obtained PC is used as an adsorbent in this process. CoSA-Co3 O4 @PC shows high oxygen evolution reaction (OER) activity in transitional metal impurity-free (TMIF) 1 M KOH and alkaline Dseawater. CoSA-Co3 O4 @PC exhibits mass activity that is 15 times higher than the commercial RuO2 . Theoretical interpretations suggest that the optimized CoSA sites in Co3 O4 USNPs reduce the energy barrier for alkaline water dissociation and simultaneously trigger an excellent OER followed by an adsorbate evolution mechanism (AEM).

14.
Mol Phylogenet Evol ; 197: 108106, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38750675

RESUMO

The Hildenbrandiales, a typically saxicolous red algal order, is an early diverging florideophycean group with global significance in marine and freshwater ecosystems across diverse temperature zones. To comprehensively elucidate the diversity, phylogeny, biogeography, and evolution of this order, we conducted a thorough re-examination employing molecular data derived from nearly 700 specimens. Employing a species delimitation method, we identified Evolutionary Species Units (ESUs) within the Hildenbrandiales aiming to enhance our understanding of species diversity and generate the first time-calibrated tree and ancestral area reconstruction for this order. Mitochondrial cox1 and chloroplast rbcL markers were used to infer species boundaries, and subsequent phylogenetic reconstructions involved concatenated sequences of cox1, rbcL, and 18S rDNA. Time calibration of the resulting phylogenetic tree used a fossil record from a Triassic purportedly freshwater Hildenbrandia species and three secondary time points from the literature. Our species delimitation analysis revealed an astounding 97 distinct ESUs, quintupling the known diversity within this order. Our time-calibration analysis placed the origin of Hildenbrandiales (crown age) in the Ediacaran period, with freshwater species emerging as a monophyletic group during the later Permian to early Triassic. Phylogenetic reconstructions identified seven major clades, experiencing early diversification during the Silurian to Carboniferous period. Two major evolutionary events-colonization of freshwater habitats and obligate systemic symbiosis with a marine fungus-marked this order, leading to significant morphological alterations without a commensurate increase in species diversification. Despite the remarkable newly discovered diversity, the extant taxon diversity appears relatively constrained when viewed against an evolutionary timeline spanning over 800 million years. This limitation may stem from restricted geographic sampling or the prevalence of asexual reproduction. However, species richness estimation and rarefaction analyses suggest a substantially larger diversity yet to be uncovered-potentially four times greater. These findings drastically reshape our understanding of the deeply diverging florideophycean order Hildenbrandiales species diversity, and contribute valuable insights into this order's evolutionary history and ecological adaptations. Supported by phylogenetic, ecological and morphological evidence, we established the genus Riverina gen. nov. to accommodate freshwater species of Hildenbrandiales, which form a monophyletic clade in our analyses. This marks the first step toward refining the taxonomy of the Hildenbrandiales, an order demanding thorough revisions, notably with the creation of several genera to address the polyphyletic status of Hildenbrandia. However, the limited diagnostic features pose a challenge, necessitating a fresh approach to defining genera. A potential solution lies in embracing a molecular systematic perspective, which can offer precise delineations of taxonomic boundaries.


Assuntos
Filogenia , Rodófitas , Simbiose , Simbiose/genética , Rodófitas/genética , Rodófitas/classificação , Filogeografia , Rios , Análise de Sequência de DNA , Teorema de Bayes , Biodiversidade , Evolução Molecular , Evolução Biológica , RNA Ribossômico 18S/genética
15.
Haematologica ; 109(7): 2207-2218, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205555

RESUMO

Osteolytic bone lesion is a major cause of lower quality of life and poor prognosis in patients with multiple myeloma (MM), but molecular pathogenesis of the osteolytic process in MM remains elusive. Fms-like tyrosine kinase 3 ligand (FLT3L) was reported to be elevated in bone marrow (BM) and blood of patients with advanced MM who often show osteolysis. Here, we investigated a functional link of FLT3L to osteolytic process in MM. We recruited 86, 306, and 52 patients with MM, acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), respectively. FLT3L levels of patients with hematologic malignancies were measured in BM-derived plasma and found to be significantly higher in MM than in AML or ALL, which rarely show osteolysis. FLT3L levels were further elevated in MM patients with bone lesion compared with patients without bone lesion. In vitro cell-based assays showed that the administration of FLT3L to HEK293T, HeLa, and U2OS cells led to an increase in the DKK1 transcript level through STAT3 phosphorylation at tyrosine 705. WNT reporter assay showed that FLT3L treatment reduced WNT signaling and nuclear translocation of ß-catenin. These results collectively show that the FLT3L-STAT3-DKK1 pathway inhibits WNT signaling-mediated bone formation in MM, which can cause osteolytic bone lesion. Finally, transcriptomic profiles revealed that FLT3L and DKK1 were predominantly elevated in the hyperdiploidy subtype of MM. Taken together, FLT3L can serve as a promising biomarker for predicting osteolytic bone lesion and also a potential therapeutic target to prohibit the progression of the osteolytic process in MM with hyperdiploidy.


Assuntos
Mieloma Múltiplo , Osteólise , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Osteólise/patologia , Osteólise/genética , Osteólise/etiologia , Via de Sinalização Wnt , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Estadiamento de Neoplasias , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adulto
16.
Am J Nephrol ; 55(2): 245-254, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38198780

RESUMO

INTRODUCTION: Serum activin A has been reported to contribute to vascular calcification and kidney fibrosis in chronic kidney disease. We aimed to investigate whether higher serum activin levels were associated with poor allograft outcomes in patients with kidney transplantation (KT). METHODS: A total of 860 KT patients from KNOW-KT (Korean Cohort Study for Outcome in Patients with Kidney Transplantation) were analyzed. We measured serum activin levels pre-KT and 1 year after KT. The primary outcome was the composite of a ≥50% decline in estimated glomerular filtration rate and graft failure. Multivariable cause-specific hazard model was used to analyze association of 1-year activin levels with the primary outcome. The secondary outcome was coronary artery calcification score (CACS) at 5 years after KT. RESULTS: During the median follow-up of 6.7 years, the primary outcome occurred in 109 (12.7%) patients. The serum activin levels at 1 year were significantly lower than those at pre-KT (488.2 ± 247.3 vs. 704.0 ± 349.6). When patients were grouped based on the median activin level at 1 year, the high-activin group had a 1.91-fold higher risk (95% CI, 1.25-2.91) for the primary outcome compared to the low-activin group. A one-standard deviation increase in activin levels as a continuous variable was associated with a 1.36-fold higher risk (95% CI, 1.16-1.60) for the primary outcome. Moreover, high activin levels were significantly associated with 1.56-fold higher CACS (95% CI, 1.12-2.18). CONCLUSION: Post-transplant activin levels were independently associated with allograft functions as well as coronary artery calcification in KT patients.


Assuntos
Transplante de Rim , Humanos , Transplante de Rim/efeitos adversos , Estudos de Coortes , Resultado do Tratamento , Sobrevivência de Enxerto , Aloenxertos , Ativinas , Fatores de Risco
17.
Br J Dermatol ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38332643

RESUMO

BACKGROUND: Alopecia areata (AA) is a chronic autoimmune disease that leads to a high psychiatric, economic, and systemic disease burden. A comprehensive understanding of AA epidemiology is essential for evaluating healthcare source utilization; however, there is a lack of systematic approach for summarizing epidemiologic data on AA. OBJECTIVES: To systematically investigate the global, regional, and national incidence and prevalence of AA. METHODS: A structured search was conducted using the Ovid MEDLINE, EMBASE, Cochrane Library, Web of Science, SciELO, and Korean journal databases from their inception date to October 4, 2023. Studies that reported the prevalence or incidence of AA were included. We used a Bayesian hierarchical linear mixed model to analyse the prevalence estimates. The primary outcomes of our study were the global, regional, and national prevalence of physician-diagnosed AA for overall population, adults, and children. The incidence data were summarised descriptively. RESULTS: In total, 88 studies from 28 countries were included in the analysis. The reported incidence of alopecia areata tended to be higher in adults aged 19-50 years, and this trend was consistent with its estimated prevalence. The reported prevalence in overall population tended to be higher in men compared to in women. The estimated lifetime prevalence of AA was 0.10% (95% credible intervals, 0.03%-0.39%) in the general population worldwide, 0.12% (95% credible intervals, 0.02%-0.52%) in adults, and 0.03% (95% credible intervals, 0.01%-0.12%) in children. The estimated prevalence was highest in the Asian region and lowest in the African region. CONCLUSIONS: In this study, 48% of the total Global Burden of Disease regions had insufficient data reporting the prevalence or incidence of AA. Further studies are needed to provide epidemiological information on middle- and low-income countries. Our study can serve as a crucial reference in terms of healthcare policy decisions.

18.
Immunity ; 43(1): 107-19, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26141583

RESUMO

Distinct groups of innate lymphoid cells (ILCs) such as ILC1, ILC2, and ILC3 populate the intestine, but how these ILCs develop tissue tropism for this organ is unclear. We report that prior to migration to the intestine ILCs first undergo a "switch" in their expression of homing receptors from lymphoid to gut homing receptors. This process is regulated by mucosal dendritic cells and the gut-specific tissue factor retinoic acid (RA). This change in homing receptors is required for long-term population and effector function of ILCs in the intestine. Only ILC1 and ILC3, but not ILC2, undergo the RA-dependent homing receptor switch in gut-associated lymphoid tissues. In contrast, ILC2 acquire gut homing receptors in a largely RA-independent manner during their development in the bone marrow and can migrate directly to the intestine. Thus, distinct programs regulate the migration of ILC subsets to the intestine for regulation of innate immunity.


Assuntos
Movimento Celular/fisiologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Subpopulações de Linfócitos/imunologia , Tretinoína/metabolismo , Animais , Células Cultivadas , Citrobacter rodentium/imunologia , Células Dendríticas/imunologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Imunidade Inata , Intestinos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR/genética , Receptores CCR7/genética
19.
Arch Microbiol ; 206(6): 278, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38789600

RESUMO

Two novel strains of bacteria, CA1-15T and BIUV-7T, were isolated from soil samples gathered in Cheonan-si, Republic of Korea, and Inje-gun, Republic of Korea, respectively. These bacteria are Gram-negative, aerobic, and non-motile. Phylogenetic evaluations, using the sequence of the 16S rRNA gene, showed that strains CA1-15T and BIUV-7T belong to a distinctive clade within the family Sphingomonadaceae (order Sphingomonadales, class Alphaproteobacteria). The strains exhibited the highest similarity in their genetic makeup with representatives of the genus Sphingomonas. Strain CA1-15T was closely related to Sphingomonas echinoides NRRL B-3126T (97.8% similarity in 16S rRNA gene sequence), Sphingomonas oligophenolica JCM 12,082T (97.8%), Sphingomonas glacialis C16yT (97.6%) and Sphingomonas psychrolutea MDB1-AT (97.3%). Strain BIUV-7T was closely related to Sphingomonas nostoxanthinifaciens AK-PDB1-5T (97.0%), Sphingomonas vulcanisoli SN6-13T (96.3%), Sphingomonas naphthae DKC-5-1T (96.2%), and Sphingomonas prati W18RDT (95.7%). The optimal growth conditions for strains CA1-15T and BIUV-7T were determined to be at pH 7.0 and a temperature of 25 °C. Analysis of the cellular fatty acids of strain CA1-15T and BIUV-7T revealed that summed feature 8 (C18:1ω7c/C18:1ω6c) (60.4%), summed feature 8 (C18:1ω7c/C18:1ω6c) (62.9%) were the major component, respectively. Additionally, both strains exhibited ubiquinone Q-10 as their major respiratory quinone, and diphosphatidylglycerol (DPG), glycosphingolipid (SGL), and phosphatidylethanolamine (PE) as the major polar lipid. The genome of strain CA1-15T measures 4,133,944 bp, comprising 4,026 coding sequences (CDSs) and 46 tRNA genes. Similarly, the genome of strain BIUV-7T is 4,563,252 bp, characterized by 4,226 CDSs and 44 tRNA genes. The average nucleotide identity (ANI) analysis and digital DNA-DNA hybridization (dDDH) values between strain CA1-15T and other Sphingomonas species range from 73.2 to 79.9% and 19.4-22.9%, respectively. Comparatively, ANI and dDDH values between strain BIUV-7T and other Sphingomonas species are in the range of 72.9-76.5% and 19.3-20.9%, respectively. Based on the biochemical, chemotaxonomic, and phylogenetic analyses, it is evident that strains CA1-15T and BIUV-7T represent two novel bacterial species within the genus Sphingomonas. Accordingly, the names Sphingomonas immobilis sp. nov. and Sphingomonas natans sp. nov. are proposed. also, CA1-15T(= KCTC 92960T = NBRC 116547T) is the type strain of Sphingomonas immobilis and BIUV-7T(= KCTC 92961T = NBRC 116546T) is the type strain of Sphingomonas natans.


Assuntos
Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos , Filogenia , RNA Ribossômico 16S , Microbiologia do Solo , Sphingomonas , Sphingomonas/genética , Sphingomonas/isolamento & purificação , Sphingomonas/classificação , RNA Ribossômico 16S/genética , República da Coreia , Ácidos Graxos/análise , DNA Bacteriano/genética , Análise de Sequência de DNA , Fosfolipídeos/análise
20.
J Vasc Interv Radiol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992836

RESUMO

PURPOSE: To compare oncologic outcomes of transarterial chemoembolization (TACE) using 70-150 µm and 100-300 µm drug-eluting beads (DEBs) to treat small hepatocellular carcinoma (HCC). METHODS: This retrospective study included 93 patients with small HCC (≤3cm) who underwent first TACE with DEB: 43 with 70-150 µm DEBs and 50 with 100-300 µm DEBs. Initial tumor response was assessed using per-patient and per-lesion analysis. Progression-free survival (PFS) and target tumor PFS were analyzed for patients and lesions with initial complete response (CR). Overall survival (OS) and safety outcomes were also evaluated. RESULTS: At 1 month, initial CR rates were 72.1% in the 70-150 µm group and 70.0% in the 100-300 µm group. PFS was significantly longer in the 70-150 µm group (median, 26 months) compared with the 100-300 µm group (median, 11 months; log-rank p=0.049), with comparable OS results (p=0.096). Per-lesion analysis found that target tumor PFS was significantly longer in the 70-150 µm group (median, 30 months) compared with the 100-300 µm group (median, 13 months; p=0.009). Subgroup analysis revealed the 70-150 µm group had significantly longer target tumor PFS compared with the 100-300 µm group in the 1.0-2.0 cm subgroup (p=0.017), but not in the 2.1-3.0 cm subgroup (p=0.117). No significant differences in adverse events were observed between the two groups. CONCLUSION: The 70-150 µm and 100-300 µm DEB-TACE resulted in comparable tumor response and short-term safety in small HCCs (≤3cm). However, in cases where CR was achieved, treatment with smaller beads demonstrated longer PFS and target tumor PFS.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa