Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Res ; 120(7): 745-755, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38507654

RESUMO

AIMS: In hypoxia, endothelial cells (ECs) proliferate, migrate, and form new vasculature in a process called angiogenesis. Recent studies have suggested that ECs rely on glycolysis to meet metabolic needs for angiogenesis in ischaemic tissues, and several studies have investigated the molecular mechanisms integrating angiogenesis and endothelial metabolism. Here, we investigated the role of stem cell factor (SCF) and its receptor, cKIT, in regulating endothelial glycolysis during hypoxia-driven angiogenesis. METHODS AND RESULTS: SCF and cKIT signalling increased the glucose uptake, lactate production, and glycolysis in human ECs under hypoxia. Mechanistically, SCF and cKIT signalling enhanced the expression of genes encoding glucose transporter 1 (GLUT1) and glycolytic enzymes via Akt- and ERK1/2-dependent increased translation of hypoxia inducible factor 1A (HIF1A). In hypoxic conditions, reduction of glycolysis and HIF-1α expression using chemical inhibitors significantly reduced the SCF-induced in vitro angiogenesis in human ECs. Compared with normal mice, mice with oxygen-induced retinopathy (OIR), characterized by ischaemia-driven pathological retinal neovascularization, displayed increased levels of SCF, cKIT, HIF-1α, GLUT1, and glycolytic enzymes in the retina. Moreover, cKIT-positive neovessels in the retina of mice with OIR showed elevated expression of GLUT1 and glycolytic enzymes. Further, blocking SCF and cKIT signalling using anti-SCF neutralizing IgG and cKIT mutant mice significantly reduced the expression of HIF-1α, GLUT1, and glycolytic enzymes and decreased the pathological neovascularization in the retina of mice with OIR. CONCLUSION: We demonstrated that SCF and cKIT signalling regulate angiogenesis by controlling endothelial glycolysis in hypoxia and elucidated the SCF/cKIT/HIF-1α axis as a novel metabolic regulation pathway during hypoxia-driven pathological angiogenesis.


Assuntos
Hipóxia Celular , Transportador de Glucose Tipo 1 , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia , Proteínas Proto-Oncogênicas c-kit , Transdução de Sinais , Fator de Células-Tronco , Animais , Humanos , Camundongos , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Glucose/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 1/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-kit/metabolismo , Proteínas Proto-Oncogênicas c-kit/genética , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/genética , Fator de Células-Tronco/metabolismo , Fator de Células-Tronco/genética
2.
Pharmaceutics ; 13(8)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452268

RESUMO

Stem cell factor (SCF) and its receptor, cKIT, are novel regulators of pathological neovascularization in the eye, which suggests that inhibition of SCF/cKIT signaling may be a novel pharmacological strategy for treating neovascular age-related macular degeneration (AMD). This study evaluated the therapeutic potential of a newly developed fully human monoclonal antibody targeting cKIT, NN2101, in a murine model of neovascular AMD. In hypoxic human endothelial cells, NN2101 substantially inhibited the SCF-induced increase in angiogenesis and activation of the cKIT signaling pathway. In a murine model of neovascular AMD, intravitreal injection of NN2101 substantially inhibited the SCF/cKIT-mediated choroidal neovascularization (CNV), with efficacy comparable to aflibercept, a vascular endothelial growth factor inhibitor. A combined intravitreal injection of NN2101 and aflibercept resulted in an additive therapeutic effect on CNV. NN2101 neither caused ocular toxicity nor interfered with the early retinal vascular development in mice. Ocular pharmacokinetic analysis in rabbits indicated that NN2101 demonstrated a pharmacokinetic profile suitable for intravitreal injection. These findings provide the first evidence of the potential use of the anti-cKIT blocking antibody, NN2101, as an alternative or additive therapeutic for the treatment of neovascular AMD.

3.
Exp Mol Med ; 52(10): 1744-1753, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33051573

RESUMO

Dipeptidyl peptidase-4 (DPP-4) inhibitors are used for the treatment of type 2 diabetes mellitus (DM). Recent studies have shown that beyond their effect in lowing glucose, DPP-4 inhibitors mitigate DM-related microvascular complications, such as diabetic retinopathy. However, the mechanism by which pathological retinal neovascularization, a major clinical manifestation of diabetic retinopathy, is inhibited is unclear. This study sought to examine the effects of evogliptin, a potent DPP-4 inhibitor, on pathological retinal neovascularization in mice and elucidate the mechanism by which evogliptin inhibits angiogenesis mediated by vascular endothelial growth factor (VEGF), a key factor in the vascular pathogenesis of proliferative diabetic retinopathy (PDR). In a murine model of PDR, an intravitreal injection of evogliptin significantly suppressed aberrant retinal neovascularization. In human endothelial cells, evogliptin reduced VEGF-induced angiogenesis. Western blot analysis showed that evogliptin inhibited the phosphorylation of signaling molecules associated with VEGF-induced cell adhesion and migration. Moreover, evogliptin substantially inhibited the VEGF-induced activation of adenosine 5'-diphosphate ribosylation factor 6 (Arf6), a small guanosine 5'-triphosphatase (GTPase) that regulates VEGF receptor 2 signal transduction. Direct activation of Arf6 using a chemical inhibitor of Arf-directed GTPase-activating protein completely abrogated the inhibitory effect of evogliptin on VEGF-induced activation of the angiogenic signaling pathway, which suggests that evogliptin suppresses VEGF-induced angiogenesis by blocking Arf6 activation. Our results provide insights into the molecular mechanism of the direct inhibitory effect of the DPP-4 inhibitor evogliptin on pathological retinal neovascularization. In addition to its glucose-lowering effect, the antiangiogenic effect of evogliptin could also render it beneficial for individuals with PDR.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Inibidores da Dipeptidil Peptidase IV/farmacologia , Piperazinas/farmacologia , Neovascularização Retiniana/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP/genética , Inibidores da Angiogênese/farmacologia , Animais , Modelos Animais de Doenças , Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Fosforilação , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/etiologia , Neovascularização Retiniana/patologia , Transdução de Sinais/efeitos dos fármacos
4.
Hypertension ; 76(6): 1778-1786, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33100045

RESUMO

Loss of BMP (bone morphogenic protein) signaling induces a phenotype switch of pulmonary arterial smooth muscle cells (PASMCs), which is the pathological basis of pulmonary vascular remodeling in pulmonary arterial hypertension (PAH). Here, we identified FGF12 (fibroblast growth factor 12) as a novel regulator of the BMP-induced phenotype change in PASMCs and elucidated its role in pulmonary vascular remodeling during PAH development. Using murine models of PAH and lung specimens of patients with PAH, we observed that FGF12 expression was significantly reduced in PASMCs. In human PASMCs, FGF12 expression was increased by canonical BMP signaling. FGF12 knockdown blocked the antiproliferative and prodifferentiation effect of BMP on human PASMCs, suggesting that FGF12 is required for the BMP-mediated acquisition of the quiescent and differentiated PASMC phenotype. Mechanistically, FGF12 regulated the BMP-induced phenotype change by inducing MEF2a (myocyte enhancer factor 2a) phosphorylation via p38MAPK signaling, thereby modulating the expression of MEF2a target genes involved in cell proliferation and differentiation. Furthermore, we observed that TG (transgenic) mice with smooth muscle cell-specific FGF12 overexpression were protected from chronic hypoxia-induced PAH development, pulmonary vascular remodeling, and right ventricular hypertrophy. Consistent with the in vitro data using human PASMCs, FGF12 TG mice showed increased MEF2a phosphorylation and a substantial change in MEF2a target gene expression, compared with the WT (wild type) controls. Overall, our findings demonstrate a novel BMP/FGF12/MEF2a pathway regulating the PASMC phenotype switch and suggest FGF12 as a potential target for the development of therapeutics for ameliorating pulmonary vascular remodeling in PAH.


Assuntos
Fatores de Crescimento de Fibroblastos/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/genética , Remodelação Vascular/genética , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células/genética , Células Cultivadas , Fatores de Crescimento de Fibroblastos/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases/genética , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculo Liso Vascular/citologia , Hipertensão Arterial Pulmonar/fisiopatologia , Artéria Pulmonar/metabolismo , Artéria Pulmonar/fisiopatologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa