Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1360050, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562564

RESUMO

Introduction: The strawberry industry in South Korea has witnessed a significant 65% growth over the past decade, surpassing other fruits and vegetables in production value. While sweetness and acidity are well-recognized flavor determinants, the role of volatile organic compounds (VOCs) in defining the desirable flavor profiles of strawberries is also crucial. However, existing research has predominantly concentrated on a limited range of commercial cultivars, neglecting the broader spectrum of strawberry varieties. Methods: This study embarked on developing a comprehensive VOC database for a diverse array of strawberry cultivars sourced both domestically and internationally. A total of 61 different strawberry cultivars from Korea (45), the USA (7), Japan (8), and France (1) were analyzed for their VOC content using Tenax TA Thermo Desorption tubes and Gas Chromatography-Mass Spectrometry (GC-MS). In addition to VOC profiling, heritability was assessed using one-way ANOVA to compare means among multiple groups, providing insights into the genetic basis of flavor differences. Results and discussion: The analysis identified 122 compounds categorized into esters, alcohols, terpenes, and lactones, with esters constituting the majority (46.5%) of total VOCs in Korean cultivars. 'Arihyang', 'Sunnyberry', and 'Kingsberry' exhibited the highest diversity of VOCs detected (97 types), whereas 'Seolhong' showed the highest overall concentration (57.5mg·kg-1 FW). Compared to the USA cultivars, which were abundant in γ-decalactone (a peach-like fruity aroma), most domestic cultivars lacked this compound. Notably, 'Misohyang' displayed a high γ-decalactone content, highlighting its potential as breeding germplasm to improve flavor in Korean strawberries. The findings underscore the importance of a comprehensive VOC analysis across different strawberry cultivars to understand flavor composition. The significant variation in VOC content among the cultivars examined opens avenues for targeted breeding strategies. By leveraging the distinct VOC profiles, particularly the presence of γ-decalactone, breeders can develop new strawberry varieties with enhanced flavor profiles, catering to consumer preferences for both domestic and international markets.

2.
Plants (Basel) ; 12(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37050092

RESUMO

Papaya fruit (Carica papaya) has different degrees of ripening within each fruit, affecting its commercial market value. The fruit characteristics of "Tainung No. 2" Red papaya were investigated at the stem-end, middle, and calyx-end across 3 ripening stages and categorized based on fruit skin coloration: unripe at 16 weeks after anthesis (WAA), half-ripe at 18 WAA, and full-ripe at 20 WAA. The fruits maintained an elliptical shape during ripening with a ratio of 2.36 of the length to the width. The peel and pulp color changed from green to white to yellow during ripening, regardless of the three parts. In the pulp, soluble solid contents increased, and firmness decreased during ripening but did not differ among the three parts. Individual nutrient contents, including metabolites and minerals, changed dynamically between the ripening stages and fruit parts. Total carbohydrates and proteins, N, and K, were accumulated more at the stem-end during ripening; meanwhile, fructose, glucose, Mg, and Mn were accumulated more at the calyx-end. In the principal component analysis, ripening stages and fruit parts were distinctly determined by the first and second principal components, respectively. Understanding the nutrient and metabolite dynamics during ripening and their distribution within the fruit can help optimize cultivation practices, enhance fruit quality, and ultimately benefit both growers and consumers.

3.
Sci Rep ; 12(1): 11593, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35804002

RESUMO

To investigate the effects of short-term low temperatures, three-year-old avocado (Persea americana cv. Hass) seedlings were treated with 1, - 2, or - 5 °C for 1 h and subsequently recovered in ambient condition for 24 h. Leaf color changes were investigated with chlorophyll, carotenoid, and phenolic contents. Photosynthetic responses were examined using gas exchange analysis. With H2O2 contents as oxidative stresses, enzymatic (ascorbate peroxidase, APX; glutathione reductase, GR; catalase, CAT; peroxidase, POD) and non-enzymatic antioxidant activities were determined using spectrophotometry. Leaves in the avocado seedlings started to be discolored with changes in the contents of chlorophyll a, carotenoids, and phenolics when treated with - 5 °C. However, the H2O2 content was not different in leaves treated with low temperatures. Photosynthetic activities decreased in leaves in the seedlings treated with - 5 °C. Of antioxidant enzymes, APX and GR have high activities in leaves in the seedlings treated with 1 and - 2 °C. In leaves in the seedlings treated with - 5 °C, the activities of all enzymes decreased. Non-enzymatic antioxidant activity was not different among leaves treated with low temperatures. These results indicated that APX and GR would play a critical role in withstanding chilling stress in 'Hass' avocado seedlings. However, under lethal temperature, even for a short time, the plants suffered irreversible damage with the breakdown of photosystem and antioxidant system.


Assuntos
Antioxidantes , Persea , Antioxidantes/metabolismo , Catalase/metabolismo , Clorofila A/metabolismo , Glutationa Redutase/metabolismo , Peróxido de Hidrogênio/metabolismo , Persea/metabolismo , Folhas de Planta/metabolismo , Plântula/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa