Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chonnam Med J ; 60(1): 51-58, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38304128

RESUMO

Alzheimer's disease has recently been classified using three biological markers (amyloid [A], tau [T], and neurodegeneration [N]) to help elucidate its progression. We aimed to investigate whether there were differences between cognitive function and the clinical dementia symptoms over time relative to the ATN classification in the amyloid-negative group. In the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort, 310 participants who underwent all the tests required for ATN classification were enrolled. The cognitive function score differences (Alzheimer's Disease Assessment Scale-Cognitive Subscale 13 [ADAS-Cog 13], Clinical Dementia Rating Sum of Boxes [CDR-SOB], and Mini-Mental State Examination [MMSE]) between the groups were analyzed using the analysis of covariance and score changes over time with a linear mixed-effects model. In the cross-sectional analysis, ADAS-Cog 13 scores were higher for A-T-N+ and A-T+N+ than for A-T-N- (p<0.001) and A-T+N- (p<0.001). In the longitudinal analysis, CDR-SOB scores for A-T+N+ deteriorated faster than A-T-N- (p<0.001), A-T+N- (p<0.001) and A-T-N+ (p<0.001). Hippocampal atrophy progressed faster in A-T-N+ (p<0.001) and A-T+N+ (p=0.02) than in A-T-N-. Through this study, we discovered that even in individuals classified as amyloid negative, neurodegeneration with tau deposition exacerbates cognitive decline and worsens clinical symptoms, underscoring the need for continuous monitoring and observation.

2.
Mater Today Bio ; 26: 101070, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38711939

RESUMO

Endogenous stem cell-driven in situ bone tissue formation has recently garnered increasing attention. Therefore, our study sought to refine methods to enhance the migration and subsequent osteogenic differentiation of these cells. Our innovative approach involves using an injectable hydrogel that combines click cross-linking sites and a BMP-2 mimetic peptide (BP) with hyaluronic acid (HA). This injectable formulation, hereinafter referred to as SPa + Cx-HA-BP, incorporates a substance P analog peptide (SPa) with Cx-HA-BP, proving versatile for in vitro and in vivo applications without cytotoxicity. The controlled release of SPa creates a gradient that guides endogenous stem cells towards the Cx-HA scaffold from specific tissue niches. Both Cx-HA and SPa+Cx-HA induced minimal changes in the expression of genes associated with osteogenic differentiation. In contrast, these genes were robustly induced by both SPa + Cx-HA+BP and SPa + Cx-HA-BP, in which BP was respectively integrated via physical and chemical methods. Remarkably, chemically incorporating BP (Cx-HA-BP) resulted in 4-9 times higher osteogenic gene expression than physically mixed BP in Cx-HA+BP. This study validates the role of SPa role in guiding endogenous stem cells toward the hydrogel and underscores the substantial impact of sustained BP presence within the hydrogel. Collectively, our findings offer valuable insights for the development of innovative strategies to promote endogenous stem cell-based tissue regeneration. The developed hydrogel effectively guides stem cells from their natural locations and facilitates sustained osteogenic differentiation, thus holding great promise for applications in regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa