Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
J Am Chem Soc ; 144(37): 16996-17009, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36074582

RESUMO

A molecular capsule (1) consisting of two calix[4]pyrroles connected via ethylene diamide linkers has been prepared as an anion receptor. 1H NMR spectroscopic studies carried out in CD2Cl2 revealed that receptor 1 recognizes a variety of anions with different binding modes and stoichiometries. For instance, receptor 1 binds fluoride and acetate with 1:2 receptor/anion stoichiometry and other test anions with 1:1 stoichiometry in solution when their respective tetrabutylammonium (TBA+) salts were used. In contrast, with tetraethylammnium (TEA+) salts, receptor 1 forms 1:2 complexes with chloride and bromide in addition to fluoride, overcoming expected Columbic repulsions between the anions co-bound in close proximity. Receptor 1 is also able to bind oxoanions, such as oxalate (C2O42-), dihydrogen phosphate (H2PO4-), sulfate (SO42-), and hydrogen pyrophosphate (HP2O73-), in the form of 1:1 complexes as the result of presumed cooperation between the two calix[4]pyrrole subunits. The selectivity of receptor 1 for fluoride versus dihydrogen phosphate varies depending on their relative concentrations. For instance, in the presence of less than 1.0 equiv of an equimolar mixture of fluoride and dihydrogen phosphate, receptor 1 shows high selectivity for dihydrogen phosphate. In contrast, in the presence of ≥2.0 anion equiv, receptor 1 binds fluoride preferentially, forming a 1:2 complex. Moreover, when treated with F-, the preformed 1:1 H2PO4- complex of receptor 1 is converted to the corresponding 1:2 receptor/fluoride complex with the release of the prebound dihydrogen phosphate anion. As inferred from gas-phase computations, this seemingly counterintuitive behavior is rationalized in terms of the precomplexed dihydrogen phosphate serving to reduce the reorganization energy required to bind two fluoride anions. The presence of a water molecule in addition to the bound fluoride anions may also favor the formation of the 1:2 F- complex. The present study provides a new approach for fine-tuning the binding selectivity of polytopic anion receptors.


Assuntos
Calixarenos , Fosfatos , Ânions/química , Brometos , Calixarenos/química , Cloretos , Diamida , Difosfatos , Etilenos , Fluoretos , Hidrogênio , Oxalatos , Fosfatos/química , Pirróis/química , Sais , Sulfatos , Água
2.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36613608

RESUMO

A naphthalene imide (1) and a naphthalene (2) bearing two pyrrole units have been synthesized, respectively, as anion receptors. It was revealed by 1H NMR spectral studies carried out in CD3CN that receptors 1 and 2 bind various anions via hydrogen bonds using both C-H and N-H donors. Compared with receptor 2, receptor 1 shows higher affinity for the test anions because of the enhanced acidity of its pyrrole NH and naphthalene CH hydrogens by the electron-withdrawing imide substituent. Molecular mechanics computations demonstrate that the receptors contact the halide anions via only one of the two respective available N-H and C-H donors whereas they use all four donors for binding of the oxyanions such as dihydrogen phosphate and hydrogen pyrophosphate. Receptor 1, a push-pull conjugated system, displays a strong fluorescence centered at 625 nm, while receptor 2 exhibits an emission with a maximum peak at 408 nm. In contrast, upon exposure of receptors 1 and 2 to the anions in question, their fluorescence was noticeably quenched particularly with relatively basic anions including F-, H2PO4-, HP2O73-, and HCO3-.


Assuntos
Fosfatos , Pirróis , Ânions/química , Fosfatos/química , Espectroscopia de Ressonância Magnética , Ligação de Hidrogênio
3.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234918

RESUMO

The iodination of pyrimidines is usually carried out by using toxic reagents under acidic conditions, such as with sulfuric acid and nitric acid. To avoid toxic reagents, we developed a simple and eco-friendly approach for the iodination of pyrimidine derivatives under solvent-free conditions using solid iodine and AgNO3 as an electrophilic iodinating reagent. The advantages of this method are the relatively short reaction time (20-30 min), simple set-up procedure, high yields (70-98%), and environmentally friendly reaction conditions. Our novel approach for the iodination of pyrimidines, as well as a variety of their derivatives, will contribute to the development of nucleobase-related drug candidates.


Assuntos
Halogenação , Iodo , Indicadores e Reagentes , Ácido Nítrico , Pirimidinas , Solventes
4.
Chem Rev ; 119(17): 9753-9835, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31081334

RESUMO

Cation and anion recognition have both played central roles in the development of supramolecular chemistry. Much of the associated research has focused on the development of receptors for individual cations or anions, as well as their applications in different areas. Rarely is complexation of the counterions considered. In contrast, ion pair recognition chemistry, emerging from cation and anion coordination chemistry, is a specific research field where co-complexation of both anions and cations, so-called ion pairs, is the center of focus. Systems used for the purpose, known as ion pair receptors, are typically di- or polytopic hosts that contain recognition sites for both cations and anions and which permit the concurrent binding of multiple ions. The field of ion pair recognition has blossomed during the past decades. Several smaller reviews on the topic were published roughly 5 years ago. They provided a summary of synthetic progress and detailed the various limiting ion recognition modes displayed by both acyclic and macrocyclic ion pair receptors known at the time. The present review is designed to provide a comprehensive and up-to-date overview of the chemistry of macrocycle-based ion pair receptors. We specifically focus on the relationship between structure and ion pair recognition, as well as applications of ion pair receptors in sensor development, cation and anion extraction, ion transport, and logic gate construction.

5.
Chem Soc Rev ; 49(3): 865-907, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31957756

RESUMO

Supramolecular chemistry is a central topic in modern chemistry. It touches on many traditional disciplines, such as organic chemistry, inorganic chemistry, physical chemistry, materials chemistry, environmental chemistry, and biological chemistry. Supramolecular hosts, inter alia macrocyclic hosts, play critical roles in supramolecular chemistry. Calix[4]pyrroles, non-aromatic tetrapyrrolic macrocycles defined by sp3 hybridized meso bridges, have proved to be versatile receptors for neutral species, anions, and cations, as well as ion pairs. Compared to the parent system, octamethylcalix[4]pyrrole and its derivatives bearing simple appended functionalities, strapped calix[4]pyrroles typically display enhanced binding affinities and selectivities. In this review, we summarize advances in the design and synthesis of strapped calix[4]pyrroles, as well as their broad utility in molecular recognition, supramolecular extraction, separation technology, ion transport, and as agents capable of inhibiting cancer cell proliferation. Future challenges within this sub-field are also discussed.


Assuntos
Calixarenos/química , Calixarenos/metabolismo , Porfirinas/química , Porfirinas/metabolismo , Ânions/química , Apoptose , Cátions/química , Permeabilidade da Membrana Celular , Cristalização , Modelos Moleculares , Estrutura Molecular , Compostos Orgânicos/química , Relação Estrutura-Atividade , Termodinâmica
6.
J Am Chem Soc ; 142(47): 20182-20190, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33172262

RESUMO

A hexacationic cage 36+ was synthesized via hydrazone condensation in aqueous acid. Cage 36+ bears three biscationic arms, each of which contains four relatively acidic protons, including one NH and three CH protons. These hydrogen bond donors, as well as its intrinsic cationic nature, enable cage 36+ to encapsulate two anions concurrently within its cavity. The axial asymmetrical nature of the biscationic arms allow the cage to recognize two different anions in a selective manner, to encompass bound heteroanion dimers, such as Cl-·NO3- and Cl-·Br-. Single crystal X-ray diffraction analyses reveal that in the solid state the two anions are constrained in ultraclose proximity within the cage; e.g., the Cl-···Cl- and Cl-···Br- distances are 3.2 and 2.9 Å, respectively, which are shorter than the sum of their van der Waals radii. Evidence consistent with the sequential binding of two identical or disparate anions in CD3CN is also presented.

7.
Supramol Chem ; 31(3): 203-210, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32523324

RESUMO

The binding properties of the pyrrole-strapped calix[4]pyrrole 2 for cesium halide ion pairs were studied via 1H NMR spectroscopic and single crystal X-ray diffraction analyses. Receptor 2 was found to bind CsF, CsCl, and CsBr in the solid state and in chloroform/methanol (4/1, v/v) solution with relatively high affinity as compared with the parent calix[4]pyrrole 1. It was also revealed by solid-liquid extraction experiments that receptor 2 was capable of solubilizing CsF in CDCl3, a medium in which this salt is otherwise insoluble. Single crystal X-ray diffraction analyses and 1H NMR spectroscopic data recorded in 20% CD3OD in CDCl3 provide support for the suggestion that the strap pyrrolic NH proton of 2, as well as those of the calix[4]pyrrole framework, contribute to anion recognition, thus increasing affinity for cesium halide salts relative to the parent system 1. In the solid state, receptor 2 interacts with CsF to form a two dimensional coordination polymer in the presence of methanol. A linear coordination polymer is observed in the case of CsCl and CsBr. Receptor 2 was also found to form a complex with CsF in chloroform/methanol (4/1, v/v) solution, albeit with a different binding mode than is seen in the solid state.

8.
J Org Chem ; 83(5): 2686-2693, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29441791

RESUMO

The binding interactions between the azide anion (N3-) and the strapped calix[4]pyrroles 2 and 3 bearing auxiliary hydrogen bonding donors on the bridging moieties, as well as of normal calix[4]pyrrole 1, were investigated via 1H NMR spectroscopic and isothermal titration calorimetry analyses. The resulting data revealed that receptors 2 and 3 have significantly higher affinities for the azide anion in organic media as compared with the unfunctionalized calix[4]pyrrole 1 and other azide receptors reported to date. Single crystal X-ray diffraction analyses and calculations using density functional theory revealed that receptor 2 binds CsN3 in two distinct structural forms. As judged from the metric parameters, in the resulting complexes one limiting azide anion resonance contributor is favored over the other, with the specifics depending on the binding mode. In contrast to what is seen for 2, receptor 3 forms a CsN3 complex in 20% CD3OD in CDCl3, wherein the azide anion is bound only vertically to the NH protons of the calix[4]pyrrole and the cesium cation is complexed within the cone shaped-calix[4]pyrrole bowl. The bound cesium cation is also in close proximity to a naphthobipyrrole subunit present in a different molecule, forming an apparent cation-π complex.


Assuntos
Azidas/química , Calixarenos/química , Pirróis/química , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular
9.
Angew Chem Int Ed Engl ; 57(37): 11924-11928, 2018 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-29800493

RESUMO

LiCl is a classic "hard" ion salt that is present in lithium-rich brines and a key component in end-of-life materials (that is, used lithium-ion batteries). Its isolation and purification from like salts is a recognized challenge with potential strategic and economic implications. Herein, we describe two ditopic calix[4]pyrrole-based ion-pair receptors (2 and 3), that are capable of selectively capturing LiCl. Under solid-liquid extraction conditions, using 2 as the extractant, LiCl could be separated from a NaCl/KCl salt mixture containing as little as 1 % LiCl with circa 100 % selectivity, while receptor 3 achieved similar separations when the LiCl level was as low as 200 ppm. Under liquid-liquid extraction conditions using nitrobenzene as the non-aqueous phase, the extraction preference displayed by 2 is KCl>NaCl>LiCl. In contrast, 3 exhibits high selectivity towards LiCl over NaCl and KCl, with no appreciable extraction being observed for the latter two salts.

10.
J Am Chem Soc ; 138(31): 9779-82, 2016 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-27442768

RESUMO

The hemispherand-strapped calix[4]pyrrole (1) acts as an ion pair receptor that exhibits selectivity for lithium salts. In organic media (CD2Cl2 and CD3OD, v/v, 9:1), receptor 1 binds LiCl with high preference relative to NaCl, KCl, and RbCl. DFT calculations provided support for the observed selectivity. Single crystal structures of five different lithium ion-pair complexes of 1 were obtained. In the case of LiCl, a single bridging water molecule between the lithium cation and chloride anion was observed, while tight contact ion pairs were observed in the case of the LiBr, LiI, LiNO3, and LiNO2 salts. Receptor 1 proved effective as an extractant for LiNO2 under both model solid-liquid and liquid-liquid extraction conditions.

11.
Acc Chem Res ; 47(8): 2525-36, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-24977935

RESUMO

Ion pair receptors, which are able to bind concurrently both a cation and an anion, often display higher selectivity and affinity for specific ion pairs than simple ion receptors capable of recognizing primarily either a cation or an anion. This enhancement in recognition function is attributable to direct or indirect cooperative interactions between cobound ions via electrostatic attractions between oppositely charged ions, as well as to positive allosteric effects. In addition, by virtue of binding the counterions of the targeted ion, ion pair receptors can minimize the solvation of the counterions, which can otherwise have a negative effect on the interactions between the receptors and the targeted ions. As a result of their more favorable interactions, ion pair receptors are attractive for use in applications, such as extraction and sensing, where control of the binding interactions is advantageous. In this Account, we illustrate this potential in the context of ion pair receptors based on the calix[4]pyrrole scaffold. Both simple ditopic ion pair receptors, containing sites for the recognition of a single anion and single cation, and so-called multitopic ion pair receptors will be discussed. The latter systems differ from conventional, so-called ditopic ion pair receptors in that they contain more than one binding site for a given targeted ion (e.g., a cation). This permits a level of selectivity and control over binding function not normally seen for simple ion or ion pair receptors containing one or two binding sites, respectively. Calix[4]pyrroles are macrocyclic compounds consisting of four pyrrole units linked via fully substituted sp(3) hybridized meso carbon atoms. They are effective receptors for Lewis basic anions (e.g., halides) in typical organic media and under certain conditions will recognize ion pairs containing charge diffuse cations, such as a small alkylammonium, imidazolium, or cesium cations. The calix[4]pyrrole framework is further attractive in that it is relatively easy to modify. In particular, functionalization of the ß-pyrrolic carbon and meso-carbon atoms with simple crown ethers or calix[4]arene crown ethers can produce heteromultitopic ion pair receptors containing more than two cation binding sites. This allows the interactions between receptors and ions to be manipulated on a higher level than can be achieved using simple ion receptors or heteroditopic ion pair receptors and has made these systems attractive for use in ion transport, recognition, and extraction. Recent progress in developing calix[4]pyrroles as both multitopic and more conventional ion pair receptors is summarized in this Account. The emphasis will be on our own work.

12.
J Am Chem Soc ; 136(1): 495-505, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24328304

RESUMO

The self-assembly features of the bis-pyrene methyl amide functionalized pyridine and benzene "tweezers" 1 and 2 were studied in organic solution and in the solid state. These systems were found to display remarkably different self-association features and optical properties, which was rationalized by control experiments using compounds bearing pyrenemethyl esters, alkyl groups, or a single pyrene substituent (3-6). As dilute solutions in chloroform, tweezers 1 displays both pyrene monomer and excimer emission features reflecting intramolecular contacts between the pyrene subunits. At higher concentrations in chloroform, as well as in the solid state, tweezers 1 self-assembles to form a linear supramolecular polymer. In contrast, tweezers 2 does not interact in an intermolecular fashion and photoexcitation produces emission features characteristic of a pyrene monomer. DFT (density functional theory) and TDDFT (time dependent density functional theory) calculations revealed that the lowest vertical transitions are forbidden and that S1 of 1 is an emissive state. In contrast to 1 and 2, both pyrene-free control systems 5 and 6 were found to form linearly self-assembled supramolecular arrays in the solid state, albeit of differing structure. Upon exposure to trinitrobenzene (TNB), the self-assembled structures formed from 1 undergo deaggregation to form TNB complexes. This change is reflected in both an easily discernible color change and a quenching of the fluorescence emission intensity. Changes in the optical features were also seen in the case of 2. However, notable differences between these two ostensibly similar systems were seen.

13.
J Am Chem Soc ; 136(42): 15079-85, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25254498

RESUMO

Cage-type calix[4]pyrroles 2 and 3 bearing two additional pyrrole groups on the strap have been synthesized. Compared with the parent calix[4]pyrrole (1), they were found to exhibit remarkably enhanced affinities for anions, including the sulfate anion (TBA(+) salts), in organic media (CD2Cl2). This increase is ascribed to participation of the bipyrrole units in anion binding. Receptors 2 and 3 extract the hydrophilic sulfate anion (as the methyltrialkyl(C(8-10))ammonium (A336(+)) salt) from aqueous media into a chloroform phase with significantly improved efficiency (>10-fold relative to calix[4]pyrrole 1). These two receptors also solubilize into chloroform the otherwise insoluble sulfate salt, (TMA)2SO4 (tetramethylammonium sulfate).

14.
Chemistry ; 20(37): 11750-9, 2014 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-25077984

RESUMO

A new approach to the construction of self-assembled structures is reported that is based on ion-pair recognition. Towards this end, the calix[4]pyrrole naphthocrown-4 hybrid structures 2 and 3 were prepared. These multitopic receptors contain recognition sites for both anions and cations. On the basis of solution-phase (1) H NMR spectroscopic analysis and solid-state single-crystal X-ray diffraction structural studies, it was established that receptors 2 and 3 are able to bind specific ion pairs with high selectivity via different binding modes. In the case of CsF and CsCl, the ion-pair complexes formed from receptors 2 and 3 were found to self-assemble to produce either linear supramolecular polymeric crystalline solids or nanotube-like cyclic hexamers depending on the specific choice of ion pairs and crystallization solvents. Proton NMR studies provided evidence for solution-phase self-association in organic media.

15.
Chem Sci ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39144460

RESUMO

Improved methods for achieving the selective extraction of lithium salts from lithium sources, including rocky ores, salt-lake brines, and end-of-life lithium-ion batteries, could help address projected increases in the demand for lithium. Here, we report an ion pair receptor (2) capable of extracting LiCl and LiBr into an organic receiving phase both from the solid state and from aqueous solutions. Ion pair receptor 2 consists of a calix[4]pyrrole framework, which acts as an anion binding site, linked to a phenanthroline cation binding motif via ether linkages. Receptor 2 binds MgBr2 and CaCl2 with high selectivity over the corresponding lithium salts in a nonpolar aprotic solvent. The preference for Mg2+ and Ca2+ salts is reversed in polar protic media, allowing receptor 2 to complex LiCl and LiBr with high selectivity and affinity in organic media containing methanol or water. The effectiveness of receptor 2 as an extractant for LiCl and LiBr under liquid-liquid extraction (LLE) conditions was found to be enhanced by the presence of other potentially competitive salts in the aqueous source phase.

16.
Biofactors ; 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39163569

RESUMO

Propolis is a natural resinous substance made by bees through mixing various plant sources. Propolis has been widely recognized as a functional food due to its diverse range of beneficial bioactivities. However, the therapeutic effects of consuming propolis against atopic dermatitis (AD) remain largely unknown. The current study aimed to investigate the potential efficacy of propolis against AD and explore the active compound as well as the direct molecular target. In HaCaT keratinocytes, propolis inhibited TNF-α-induced interleukin (IL)-6 and IL-8 secretion. It also led to a reduction in chemokines such as monocyte chemoattractant protein-1 (MCP-1) and macrophage-derived chemokine (MDC), while restoring the levels of barrier proteins, filaggrin and involucrin. Propolis exhibited similar effects in AD-like human skin, leading to the suppression of AD markers and the restoration of barrier proteins. In DNCB-induced mice, oral administration of propolis attenuated AD symptoms, improved barrier function, and reduced scratching frequency and transepidermal water loss (TEWL). In addition, propolis reversed the mRNA levels of AD-related markers in mouse dorsal skin. These effects were attributed to caffeic acid phenethyl ester (CAPE), the active compound identified by comparing major components of propolis. Mechanistic studies revealed that CAPE as well as propolis could directly and selectively target MKK4. Collectively, these findings demonstrate that propolis may be used as a functional food agent for the treatment of AD.

17.
Chem Commun (Camb) ; 59(66): 9988-9991, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37519091

RESUMO

A novel squaramide cage (2) binds H2PO4- and HP2O73- with high selectivity and affinity in a highly polar protic solvent system. Receptor 2 is also able to extract these hydrophilic anions into a chloroform phase from water. The X-ray crystal structure demonstrated that compound 2 forms a complex with H2PO4- with 1 : 1 stoichiometry in the solid state.

18.
Chem Sci ; 14(5): 1218-1226, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36756337

RESUMO

A cyclo[2]carbazole[2]pyrrole (2) consisting of two carbazoles and two pyrroles has been synthesized by directly linking the carbazole 1- and 8-carbon atoms to the pyrrole α-carbon atoms. Macrocycle 2 is an extensively conjugated 16-membered macrocyclic ring that is fixed in a pseudo-1,3-alternate conformation. This provides a preorganized anion binding site consisting of two pyrrole subunits. 1H NMR spectroscopic analysis revealed that only the two diagonally opposed pyrrole NH protons, as opposed to the carbazole protons, take part in anion binding. Nevertheless, cyclo[2]carbazole[2]pyrrole 2 binds representative anions with higher affinity in CD2Cl2 than calix[4]pyrrole (1), a well-studied non-conjugated tetrapyrrole macrocycle that binds anions via four pyrrolic NH hydrogen bond interactions. On the basis of computational studies, the higher chloride anion affinity of receptor 2 relative to 1 is rationalized in terms of a larger binding energy and a lower host strain energy associated with anion complexation. In the presence of excess fluoride or bicarbonate anions, compound 2 loses two pyrrolic NH protons to produce a stable dianionic macrocycle [2-2H]2- displaying a quenched fluorescence.

19.
Materials (Basel) ; 16(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36770259

RESUMO

As the market for electric vehicles and portable electronic devices continues to grow rapidly, sodium-ion batteries (SIBs) have emerged as energy storage systems to replace lithium-ion batteries (LIBs). However, sodium-ion is heavier and larger than lithium-ion, resulting in volume expansion and slower ion transfer. It is necessary to find suitable anode materials with high capacity and stability. In addition, wearable electronics are starting to be commercialized, requiring a binder-free electrode used in flexible batteries. In this work, we synthesized nano flake-like VSe2 using organic precursor and combined it with MWCNT as carbonaceous material. VSe2@MWCNT was mixed homogenously using sonication and fabricated film electrodes without a binder and substrate via vacuum filter. The hybrid electrode exhibited high-rate capability and stable cycling performance with a discharge capacity of 469.1 mAhg-1 after 200 cycles. Furthermore, VSe2@MWCNT exhibited coulombic efficiency of ~99.7%, indicating good cycle stability. Additionally, VSe2@MWCNT showed a predominant 85.5% of capacitive contribution at a scan rate of 1 mVs-1 in sodiation/desodiation process. These results showed that VSe2@MWCNT is a suitable anode material for flexible SIBs.

20.
Food Res Int ; 172: 113134, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689898

RESUMO

Discovering new bioactivities and identifying active compounds of food materials are major fields of study in food science. However, the process commonly requires extensive experiments and can be technically challenging. In the current study, we employed network biology and cheminformatic approaches to predict new target diseases, active components, and related molecular mechanisms of propolis. Applying UHPLC-MS/MS analysis results of propolis to Context-Oriented Directed Associations (CODA) and Combination-Oriented Natural Product Database with Unified Terminology (COCONUT) systems indicated atopic dermatitis as a novel target disease. Experimental validation using cell- and human tissue-based models confirmed the therapeutic potential of propolis against atopic dermatitis. Moreover, we were able to find the major contributing compounds as well as their combinatorial effects responsible for the bioactivity of propolis. The CODA/COCONUT system also provided compound-associated genes explaining the underlying molecular mechanism of propolis. These results highlight the potential use of big data-driven network biological approaches to aid in analyzing the impact of food constituents at a systematic level.


Assuntos
Ascomicetos , Dermatite Atópica , Própole , Humanos , Própole/farmacologia , Quimioinformática , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Cocos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa