Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ther ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39066478

RESUMO

Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.

2.
Trends Mol Med ; 30(1): 89-105, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37949787

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are enzymes that catalyze the ligation of amino acids to tRNAs for translation. Beyond their traditional role in translation, ARSs have acquired regulatory functions in various biological processes (epi-translational functions). With their dual-edged activities, aberrant expression, secretion, and mutations of ARSs are associated with human diseases, including cancer, autoimmune diseases, and neurological diseases. The increasing numbers of newly unveiled activities and disease associations of ARSs have spurred interest in novel drug development, targeting disease-related catalytic and noncatalytic activities of ARSs as well as harnessing ARSs as sources for biological therapeutics. This review speculates how the translational and epi-translational activities of ARSs can be related and describes how their activities can be linked to diseases and drug discovery.


Assuntos
Aminoacil-tRNA Sintetases , Humanos , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
3.
Nanoscale Adv ; 5(3): 640-649, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756507

RESUMO

Extracellular vesicles (EVs) have emerged as vehicles that mediate diverse cell-cell communication. However, in-depth understanding of these vesicles is hampered by a lack of a reliable isolation method to separate different types of EVs with high levels of integrity and purity. Here, we developed a nanoporous and ultra-thin membrane structure (NUTS) that warrants the size-based isolation of EVs without cake formation, minimizing the sample loss during the filtration process. By utilizing the micro-electro-mechanical systems (MEMS) technique, we could also control the pore size in nanoscale. We validated the performance of this membrane to separate EVs according to their size range.

4.
J Immunother Cancer ; 8(1)2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461342

RESUMO

BACKGROUND: The generation of antigen-specific cytotoxic T lymphocyte (CTL) responses is required for successful cancer vaccine therapy. In this regard, ligands of Toll-like receptors (TLRs) have been suggested to activate adaptive immune responses by modulating the function of antigen-presenting cells (APCs). Despite their therapeutic potential, the development of TLR ligands for immunotherapy is often hampered due to rapid systemic toxicity. Regarding the safety concerns of currently available TLR ligands, finding a new TLR agonist with potent efficacy and safety is needed. METHODS: A unique structural domain (UNE-C1) was identified as a novel TLR2/6 in the catalytic region of human cysteinyl-tRNA synthetase 1 (CARS1) using comprehensive approaches, including RNA sequencing, the human embryonic kidney (HEK)-TLR Blue system, pull-down, and ELISA. The potency of its immunoadjuvant properties was analyzed by assessing antigen-specific antibody and CTL responses. In addition, the efficacy of tumor growth inhibition and the presence of the tumor-infiltrating leukocytes were evaluated using E.G7-OVA and TC-1 mouse models. The combined effect of UNE-C1 with an immune checkpoint inhibitor, anti-CTLA-4 antibody, was also evaluated in vivo. The safety of UNE-C1 immunization was determined by monitoring splenomegaly and cytokine production in the blood. RESULTS: Here, we report that CARS1 can be secreted from cancer cells to activate immune responses via specific interactions with TLR2/6 of APCs. A unique domain (UNE-C1) inserted into the catalytic region of CARS1 was determined to activate dendritic cells, leading to the stimulation of robust humoral and cellular immune responses in vivo. UNE-C1 also showed synergistic efficacy with cancer antigens and checkpoint inhibitors against different cancer models in vivo. Further, the safety assessment of UNE-C1 showed lower systemic cytokine levels than other known TLR agonists. CONCLUSIONS: We identified the endogenous TLR2/6 activating domain from human cysteinyl-tRNA synthetase CARS1. This novel TLR2/6 ligand showed potent immune-stimulating activity with little toxicity. Thus, the UNE-C1 domain can be developed as an effective immunoadjuvant with checkpoint inhibitors or cancer antigens to boost antitumor immunity.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Vacinas Anticâncer/administração & dosagem , Imunidade Celular/imunologia , Imunoterapia/métodos , Neoplasias Experimentais/terapia , Receptor 2 Toll-Like/imunologia , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/imunologia , Animais , Vacinas Anticâncer/imunologia , Domínio Catalítico , Células Dendríticas/imunologia , Feminino , Humanos , Imunização , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Linfócitos T Citotóxicos/imunologia , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa