Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Mol Syst Biol ; 19(12): e11801, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37984409

RESUMO

The accumulation of misfolded and aggregated proteins is a hallmark of neurodegenerative proteinopathies. Although multiple genetic loci have been associated with specific neurodegenerative diseases (NDs), molecular mechanisms that may have a broader relevance for most or all proteinopathies remain poorly resolved. In this study, we developed a multi-layered network expansion (MLnet) model to predict protein modifiers that are common to a group of diseases and, therefore, may have broader pathophysiological relevance for that group. When applied to the four NDs Alzheimer's disease (AD), Huntington's disease, and spinocerebellar ataxia types 1 and 3, we predicted multiple members of the insulin pathway, including PDK1, Akt1, InR, and sgg (GSK-3ß), as common modifiers. We validated these modifiers with the help of four Drosophila ND models. Further evaluation of Akt1 in human cell-based ND models revealed that activation of Akt1 signaling by the small molecule SC79 increased cell viability in all models. Moreover, treatment of AD model mice with SC79 enhanced their long-term memory and ameliorated dysregulated anxiety levels, which are commonly affected in AD patients. These findings validate MLnet as a valuable tool to uncover molecular pathways and proteins involved in the pathophysiology of entire disease groups and identify potential therapeutic targets that have relevance across disease boundaries. MLnet can be used for any group of diseases and is available as a web tool at http://ssbio.cau.ac.kr/software/mlnet.


Assuntos
Doença de Alzheimer , Doença de Huntington , Deficiências na Proteostase , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Glicogênio Sintase Quinase 3 beta , Doença de Huntington/genética , Transdução de Sinais
2.
J Appl Toxicol ; 44(2): 184-200, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37646433

RESUMO

L-tryptophan has been utilized as a feed additive in animal nutrition to improve growth performance, as well as a dietary supplement to alleviate various emotional symptoms in humans. Despite its benefits, concerns regarding its safety arose following the outbreak of eosinophilia-myalgia syndrome (EMS) among individuals who consumed L-tryptophan. The causative material of EMS was determined to be not L-tryptophan itself, but rather L-tryptophan impurities resulting from a specific manufacturing process. To investigate the effect of L-tryptophan and its impurities on humans who consume meat products derived from animals that were fed L-tryptophan and its impurities, an animal study involving broiler chickens was conducted. The animals in test groups were fed diet containing 0.065%-0.073% of L-tryptophan for 27 days. This study aimed to observe the occurrence of toxicological or EMS-related symptoms and analyze the residues of L-tryptophan impurities in meat products. The results indicated that there was no evidence of adverse effects associated with the test substance in the investigated parameters. Furthermore, most of the consumed EMS-causing L-tryptophan impurities did not remain in the meat of broiler chickens. Thus, this study demonstrated the safety of L-tryptophan and some of its impurities as a feed additive.


Assuntos
Síndrome de Eosinofilia-Mialgia , Triptofano , Humanos , Animais , Triptofano/toxicidade , Galinhas , Dieta/veterinária , Suplementos Nutricionais/efeitos adversos , Ração Animal/toxicidade , Ração Animal/análise
3.
J Appl Toxicol ; 44(8): 1153-1165, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38594832

RESUMO

L-tryptophan, an essential amino acid for physiological processes, metabolism, development, and growth of organisms, is widely utilized in animal nutrition and human health as a feed additive and nutritional supplement, respectively. Despite its known benefits, safety concerns have arisen due to an eosinophilia-myalgia syndrome (EMS) outbreak linked to L-tryptophan consumed by humans. Extensive research has established that the EMS outbreak was caused by an L-tryptophan product that contained certain impurities. Therefore, safety validations are imperative to endorse the use of L-tryptophan as a supplement or a feed additive. This study was conducted in tertiary hybrid [(Landrace × Yorkshire) × Duroc] pigs to assess general toxicity and potential risks for EMS-related symptoms associated with L-tryptophan used as a feed additive. Our investigation elucidated the relationship between L-tryptophan and EMS in swine. No mortalities or clinical signs were observed in any animals during the administration period, and the test substance did not induce toxic effects. Hematological analysis and histopathological examination revealed no changes in EMS-related parameters, such as eosinophil counts, lung lesions, skin lesions, or muscle atrophy. Furthermore, no test substance-related changes occurred in other general toxicological parameters. Through analyzing the tissues and organs of swine, most of the L-tryptophan impurities that may cause EMS were not retained. Based on these findings, we concluded that incorporating L-tryptophan and its impurities into the diet does not induce EMS in swine. Consequently, L-tryptophan may be used as a feed additive throughout all growth stages of swine without safety concerns.


Assuntos
Ração Animal , Suplementos Nutricionais , Triptofano , Animais , Triptofano/toxicidade , Triptofano/análise , Suínos , Ração Animal/análise , Ração Animal/toxicidade , Suplementos Nutricionais/toxicidade , Masculino , Feminino , Contaminação de Medicamentos
4.
Small ; : e2308936, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054614

RESUMO

Pulmonary arterial hypertension (PAH) is a severe medical condition characterized by elevated blood pressure in the pulmonary arteries. Nitric oxide (NO) is a gaseous signaling molecule with potent vasodilator effects; however, inhaled NO is limited in clinical practice because of the need for tracheal intubation and the toxicity of high NO concentrations. In this study, inhalable NO-releasing microspheres (NO inhalers) are fabricated to deliver nanomolar NO through a nebulizer. Two NO inhalers with distinct porous structures are prepared depending on the molecular weights of NO donors. It is confirmed that pore formation can be controlled by regulating the migration of water molecules from the external aqueous phase to the internal aqueous phase. Notably, open porous NO inhalers (OPNIs) can deliver NO deep into the lungs through a nebulizer. Furthermore, OPNIs exhibit vasodilatory and anti-inflammatory effects via sustained NO release. In conclusion, the findings suggest that OPNIs with highly porous structures have the potential to serve as tools for PAH treatment.

5.
Amino Acids ; 55(2): 173-182, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36588144

RESUMO

L-tryptophan has been used as a feed additive for swine and poultry and as a nutrient supplement for humans. However, some impurities in L-tryptophan have been reported as causative components of eosinophilia-myalgia syndrome. Therefore, from a safety perspective, it is important to analyze meat samples for these impurities. This study aims to develop an analytical method for the simultaneous detection of L-tryptophan impurities in meat products using LC-MS/MS. Among the various impurities, detection methods for (S)-2-amino-3-(5-hydroxy-1H-indol-3-yl)propanoic acid (5-hydroxytryptophan) (HTP), 1-methyl-1,2,3,4-tetrahydro-ß-carboline-3-carboxylic acid (MTCA), 3a-hydroxy-1,2,3,3a,8,8a-hexahydropyrrolo-[2,3-b]-indole-2-carboxylic acid (PIC), and 1,1'-ethylidenebistryptophan (EBT) and 2-(3-indoylmethyl)-L-tryptophan (IMT) were developed. The developed method allowed simultaneous determination of these four impurities in 5 min. No interferences from the matrix were observed, and the method showed good sensitivity to each analyte. The method detection limit and limit of quantification in meat matrices were below 11.2 and 35.7 µg/kg, respectively.


Assuntos
Síndrome de Eosinofilia-Mialgia , Produtos da Carne , Humanos , Animais , Suínos , Triptofano , Cromatografia Líquida , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão
6.
Medicina (Kaunas) ; 59(6)2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37374297

RESUMO

Background and Objectives: With the emergence of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL), it has become necessary to identify the implant shell type patients have received. Therefore, an immediate, reliable method for identifying a breast implant shell type is essential. Evidence-based research and applying a real-world technique that identifies the surface topographic information of the inserted breast implants, without surgery, has become of paramount importance for breast implant physicians. Methods and Materials: A review of the medical records of 1901 patients who received 3802 breast implants and subsequently received an ultrasound-assisted examination was performed. All patients received not only a breast cancer examination but also a high-resolution ultrasonography (HRUS) assisted examination of the device at a single center between 31 August 2017 and 31 December 2022. Results: Most patients had breast implants within 10 years (77.7%) of the examination. Of the 3802 implants screened, 2034 (53.5%) were identified with macro-textured shell topography in ultrasonography. A macrotextured shell type implant was used in 53.5% of cases and a smooth type in 42.7% of cases. Seventy-three (1.9%) breast implant shell types could not be identified due to ruptures. However, 250 breast implant shell types could be identified despite rupture cases (6.5%). Conclusions: HRUS was found to be a useful and reliable image modality for identifying various surface shell types of breast implants. The shell type information would be helpful to patients who lack information about their breast implants and are concerned about BIA-ALCL.


Assuntos
Implante Mamário , Implantes de Mama , Neoplasias da Mama , Feminino , Humanos , Implante Mamário/métodos , Implantes de Mama/efeitos adversos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/cirurgia , Neoplasias da Mama/patologia , Ultrassonografia
7.
Biomacromolecules ; 21(6): 2096-2103, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32267672

RESUMO

Because nitric oxide (NO) gas is an endogenously produced signaling molecule related to numerous physiological functions, manystudies have been conducted to develop NO delivery systems for potential biomedical applications. However, NO is a reactive radical gas molecule that has a very short life-time and readily transforms into nitrogen oxide species via reaction with oxygen species. Therefore, it is necessary to develop an NO delivery carrier that allows local release of the NO gas at the site of application. In this study, Laponite (LP) nanoclay was used to fabricate an NO delivery carrier through the formation of Laponite-polyamine (LP-PAn) composites. The Laponite clay and pentaethylenehexamine (PEHA) formed a macromolecular structure by electrostatic interaction and the nitric oxide donor, N-diazeniumdiolate (NONOates), was synthesized into the LP-PAn composite. We investigated the conformation of the LP-PAn composite structure and the NO donor formation by ζ potential, X-ray diffraction, and UV-vis and Fourier transform infrared (FT-IR) spectroscopies and also by analyzing the NO release profile. Additionally, we confirmed the applicability in biomedical applications via a cell viability and in vitro endothelial cell tube formation assay.


Assuntos
Hidrogéis , Óxido Nítrico , Poliaminas , Silicatos , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Int J Mol Sci ; 21(9)2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32397660

RESUMO

Previous studies in our lab revealed that chemical zinc chelation or zinc transporter 3 (ZnT3) gene deletion suppresses the clinical features and neuropathological changes associated with experimental autoimmune encephalomyelitis (EAE). In addition, although protective functions are well documented for AMP-activated protein kinase (AMPK), paradoxically, disease-promoting effects have also been demonstrated for this enzyme. Recent studies have demonstrated that AMPK contributes to zinc-induced neurotoxicity and that 1H10, an inhibitor of AMPK, reduces zinc-induced neuronal death and protects against oxidative stress, excitotoxicity, and apoptosis. Here, we sought to evaluate the therapeutic efficacy of 1H10 against myelin oligodendrocyte glycoprotein 35-55-induced EAE. 1H10 (5 µg/kg) was intraperitoneally injected once per day for the entire experimental course. Histological evaluation was performed three weeks after the initial immunization. We found that 1H10 profoundly reduced the severity of the induced EAE and that there was a remarkable suppression of demyelination, microglial activation, and immune cell infiltration. 1H10 also remarkably inhibited EAE-associated blood-brain barrier (BBB) disruption, MMP-9 activation, and aberrant synaptic zinc patch formation. Furthermore, the present study showed that long-term treatment with 1H10 also reduced the clinical course of EAE. Therefore, the present study suggests that zinc chelation and AMPK inhibition with 1H10 may have great therapeutic potential for the treatment of multiple sclerosis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Quelantes/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Medula Espinal/efeitos dos fármacos , Zinco/toxicidade , Animais , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Barreira Hematoencefálica/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Células Cultivadas , Quelantes/química , Doenças Desmielinizantes/tratamento farmacológico , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Imuno-Histoquímica , Macrófagos/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fosforilação , Medula Espinal/metabolismo , Medula Espinal/patologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
9.
Korean J Parasitol ; 58(6): 647-652, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33412768

RESUMO

Clonorchis sinensis is the most common fish-borne intestinal parasite in Korea. The aim of the present investigation was to survey the status of C. sinensis infection and analyze associated risk factors in residents of Haman-gun, Gyeongsangnam-do. A total of 5,114 residents from 10 administrative towns/villages voluntarily agreed to participate in the study, which comprised fecal examination, a questionnaire survey for risk factors, ultrasonography, and enzymelinked immunosorbent assay for cancer biomarker detection in the blood. We detected C. sinensis eggs in 5.3% of the subjects. By region, Gunbuk-myeon had the highest number of residents with C. sinensis eggs. The infection rate and intensity were higher in male than in female residents. Based on the risk factor questionnaire, infection was highly associated with drinking, a history of C. sinensis infection, and the practice of eating of raw freshwater fish. Extension of the bile duct, infection intensity, and cancer biomarker detection significantly correlated with the presence of eggs in the study population. In conclusion, the development of feasible, long-term control policies and strategies for the elimination of C. sinensis in Korea is still required.


Assuntos
Clonorquíase/epidemiologia , Clonorquíase/parasitologia , Clonorchis sinensis , Comportamento Alimentar/fisiologia , Peixes/parasitologia , Adulto , Idoso , Animais , Estudos de Casos e Controles , Clonorquíase/prevenção & controle , Fezes/parasitologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Contagem de Ovos de Parasitas , República da Coreia/epidemiologia , Fatores de Risco , Fatores Sexuais , Inquéritos e Questionários
10.
J Cell Biochem ; 120(8): 12436-12449, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30848508

RESUMO

Immunosuppressants are crucial in organ transplantation but their side effects are a trade-off for long-term use. Colchicine has been shown to be effective in various diseases, albeit with many side effects. To enhance the immunosuppressive effects of colchicine, in addition to minimizing its side effects, we attempted to synthesize new colchicine derivatives (KR compounds). In rat cardiac and pancreatic islet allograft, long-term graft survival was identified in KR compound-treated groups. The use of cyclosporine A (CsA) or colchicine inhibited the CD3+ and CD4+ T-cell proliferation, whereas KR compounds inhibited the CD8+ T cells as well as CD4+ T cells. KR compounds reduced the apoptosis, interleukin-2 receptor expression, and signal transducer and activator of transcription 3 phosphorylation more than CsA. These results indicate that KR compounds have a potential therapeutic value as novel agents for prevention of graft deterioration by allograft of rejection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Colchicina/farmacologia , Sobrevivência de Enxerto/efeitos dos fármacos , Transplante de Coração/métodos , Tolerância Imunológica/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Animais , Linfócitos T CD8-Positivos/efeitos dos fármacos , Sobrevivência de Enxerto/imunologia , Tolerância Imunológica/efeitos dos fármacos , Ilhotas Pancreáticas/citologia , Ativação Linfocitária , Masculino , Ratos , Ratos Endogâmicos Lew , Moduladores de Tubulina/farmacologia
11.
Xenotransplantation ; 26(1): e12451, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30252163

RESUMO

BACKGROUND: Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation. METHODS: Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor. RESULTS: Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells. CONCLUSIONS: Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.


Assuntos
Meios de Cultura , Células Secretoras de Insulina/citologia , Insulina/metabolismo , Células-Tronco Mesenquimais/citologia , Transplante Heterólogo , Animais , Diferenciação Celular/genética , Células Cultivadas , Glucagon/metabolismo , Humanos , Pâncreas/metabolismo , Suínos , Transplante Heterólogo/métodos
12.
Neurochem Res ; 42(8): 2305-2313, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28349361

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a key downstream protein in the PI3K/Akt pathway. Phosphorylation of serine 9 of GSK-3ß (GSK-3ß activity inhibition) promotes cell survival. In this study, we examined changes in expressions of GSK-3ß and phosphorylation of GSK-3ß (p-GSK-3ß) in the gerbil hippocampal CA1 area after 5 min of transient cerebral ischemia. GSK-3ß immunoreactivity in the CA1 area was increased in pyramidal cells at 6 h after ischemia-reperfusion. It was decreased in CA1 pyramidal cells from 12 h after ischemia-reperfusion, and hardly detected in the CA1 pyramidal cells at 5 days after ischemia-reperfusion. p-GSK-3ß immunoreactivity was slightly decreased in CA1 pyramidal cells at 6 and 12 h after ischemia-reperfusion. It was significantly increased in these cells at 1 and 2 days after ischemia-reperfusion. Five days after ischemia-reperfusion, p-GSK-3ß immunoreactivity was hardly found in CA1 pyramidal cells. However, p-GSK-3ß immunoreactivity was strongly expressed in astrocytes primarily distributed in strata oriens and radiatum. In conclusion, GSK-3ß and p-GSK-3ß were significantly changed in pyramidal cells and/or astrocytes in the gerbil hippocampal CA1 area following 5 min of transient cerebral ischemia. This finding indicates that GSK-3ß and p-GSK-3ß are closely related to delayed neuronal death.


Assuntos
Astrócitos/enzimologia , Isquemia Encefálica/enzimologia , Região CA1 Hipocampal/enzimologia , Regulação Enzimológica da Expressão Gênica , Glicogênio Sintase Quinase 3 beta/biossíntese , Células Piramidais/enzimologia , Animais , Astrócitos/química , Astrócitos/patologia , Aprendizagem da Esquiva/fisiologia , Isquemia Encefálica/patologia , Região CA1 Hipocampal/química , Região CA1 Hipocampal/patologia , Morte Celular/fisiologia , Gerbillinae , Glicogênio Sintase Quinase 3 beta/análise , Glicogênio Sintase Quinase 3 beta/genética , Masculino , Células Piramidais/química , Células Piramidais/patologia
13.
Biochem Biophys Res Commun ; 459(2): 220-226, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25712525

RESUMO

During brain ischemic preconditioning (PC), mild bursts of ischemia render neurons resistant to subsequent strong ischemic injuries. Previously, we reported that zinc plays a key role in PC-induced neuroprotection in vitro and in vivo. Zinc-triggered p75(NTR) induction transiently activates caspase-3, which cleaves poly(ADP-ribose) polymerase-1 (PARP-1). Subsequently, the PARP-1 over-activation-induced depletion of nicotinamide adenine dinucleotide (NAD(+))/adenosine triphosphate (ATP) after exposures to lethal doses of zinc or N-methyl-D-aspartate is significantly attenuated in cortical neuronal cultures. In the present study, zinc-mediated preconditioning (Zn PC) reduced apoptotic neuronal death that was caused by N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), etoposide, or staurosporine in mouse cortical cells. We focused on heat shock protein 70 (HSP70) because NAD(+)/ATP depletion does not directly cause apoptosis, and HSP70 can inhibit the activation of caspase-9 or caspase-3 by preventing apoptosome formation or cytochrome C release. Zn PC-mediated HSP70 induction was required for neuroprotection against neuronal apoptosis, and geldanamycin-induced HSP70 induction sufficiently blocked neuronal apoptotic cell death. Furthermore, Zn PC-mediated HSP70 induction was blocked by chemical inhibitors of extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase (MAPK) signaling, but not c-Jun N-terminal protein kinase. Similarly, neuroprotection by Zn PC against TPEN-induced apoptosis was almost completely reversed by the blockade of ERK or p38 MAPK signaling. Our findings suggest that the ERK- or p38 MAPK-mediated induction of HSP70 plays a key role in inhibiting caspase-3 activation during Zn PC.


Assuntos
Apoptose/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/biossíntese , Precondicionamento Isquêmico/métodos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Zinco/administração & dosagem , Zinco/metabolismo , Animais , Células Cultivadas , Etilenodiaminas/toxicidade , Camundongos , Neurônios/patologia , Fármacos Neuroprotetores/administração & dosagem , Zinco/toxicidade , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
14.
Biochem Biophys Res Commun ; 463(4): 1084-90, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26079884

RESUMO

Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on ß cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells.


Assuntos
Sobrevivência Celular , Colágeno/metabolismo , Ilhotas Pancreáticas/fisiologia , Animais , Adesão Celular , Técnicas de Cultura de Células , Esterificação , Expressão Gênica , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Microscopia Eletrônica de Varredura , Ratos , Ratos Endogâmicos Lew
15.
Biochem Biophys Res Commun ; 445(1): 191-5, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24502947

RESUMO

The human Z-type α1-antitrypsin variant has a strong tendency to accumulate folding intermediates due to extremely slow protein folding within the endoplasmic reticulum (ER) of hepatocytes. Human α1-antitrypsin has 17 peptidyl-prolyl bonds per molecule; thus, the effect of peptidyl-prolyl isomerases on Z-type α1-antitrypsin protein folding was analyzed in this study. The protein level of Cpr2p, a yeast ER peptidyl-prolyl isomerase, increased more than two-fold in Z-type α1-antitrypsin-expressing yeast cells compared to that in wild-type α1-antitrypsin-expressing cells. When CPR2 was deleted from the yeast genome, the cytotoxicity of Z-type α1-antitrypsin increased significantly. The interaction between Z-type α1-antitrypsin and Cpr2p was confirmed by co-immunoprecipitation. In vitro folding assays showed that Cpr2p facilitated Z-type α1-antitrypsin folding into the native state. Furthermore, Cpr2p overexpression significantly increased the extracellular secretion of Z-type α1-antitrypsin. Our results indicate that ER peptidyl-prolyl isomerases may rescue Z-type α1-antitrypsin molecules from retarded folding and eventually relieve clinical symptoms caused by this pathological α1-antitrypsin.


Assuntos
Peptidilprolil Isomerase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , alfa 1-Antitripsina/metabolismo , Retículo Endoplasmático/enzimologia , Regulação da Expressão Gênica , Teste de Complementação Genética , Variação Genética , Humanos , Immunoblotting , Imunoprecipitação , Mutação , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Ligação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , alfa 1-Antitripsina/química , alfa 1-Antitripsina/genética
16.
J Chem Inf Model ; 54(7): 2139-46, 2014 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-24915156

RESUMO

Due to the involvement in the ischemic damage in the brain, 5'-adenosine monophosphate-activated protein kinase subunit α2 (AMPK2) serves as a promising target for the development of new medicines for stroke. Despite such a pharmaceutical importance, only a few small-molecule inhibitors have been reported so far. We aim in this study to identify a new class of AMPK2 inhibitors based on the structure-based virtual screening with docking simulations. To take advantage of and supplement the deficiencies of force field-based and empirical scoring functions, a consensus scoring method is employed to select the putative inhibitors by the combined use of AutoDock and FlexX programs. Prior to the virtual screening with docking simulations, both scoring functions are modified by implementing the molecular solvation free energy term to enhance the accuracy in estimating the protein-ligand binding affinity. As a consequence of the consensus virtual screening with the two modified scoring functions, we find seven structurally diverse AMPK2 inhibitors with micromolar inhibitory activity. Detailed binding mode analyses indicate that all these inhibitors can be stabilized in the ATP-binding pocket through the simultaneous establishment of the multiple hydrogen bonds and hydrophobic interactions. It is also found that a high inhibitory activity can be achieved by the reduction of desolvation cost for the inhibitor as well as by the strengthening of the enzyme-inhibitor interactions. Thus, the results of the present study demonstrate the outperformance of consensus scoring with the force field-based and empirical scoring functions that are modified to include the effects of ligand solvation on protein-ligand docking.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/metabolismo , Desenho de Fármacos , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases Ativadas por AMP/química , Avaliação Pré-Clínica de Medicamentos , Ligantes , Ligação Proteica , Conformação Proteica , Termodinâmica
17.
J Phys Chem Lett ; 15(8): 2142-2151, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38364081

RESUMO

Over the last two decades, quantum-dot light-emitting diodes (QLEDs), also known as quantum dot (QD) electroluminescent devices, have gained prominence in next-generation display technologies, positioning them as potential alternatives to organic light-emitting diodes. Nonetheless, challenges persist in enhancing key device performances such as efficiency and lifetime, while those of blue QLEDs lag behind compared with green and red counterparts. In this Perspective, we discuss key factors affecting the photoluminescence characteristics of environmentally benign blue-emissive ternary ZnSeTe QDs, including composition, core/shell heterostructure, and surface ligand. Notably, we highlight the recent progress in breakthrough strategies to enhance blue QLED performance, examining the effects of the ZnSeTe QD attribute and device architecture on device performance. This Perspective offers insights into integrated aspects of QD material and device structure in overcoming challenges toward a high-performance blue ZnSeTe QLED.

18.
Biodes Manuf ; 7(2): 121-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38497056

RESUMO

Autograft or metal implants are routinely used in skeletal repair. However, they fail to provide long-term clinical resolution, necessitating a functional biomimetic tissue engineering alternative. The use of native human bone tissue for synthesizing a biomimetic material ink for three-dimensional (3D) bioprinting of skeletal tissue is an attractive strategy for tissue regeneration. Thus, human bone extracellular matrix (bone-ECM) offers an exciting potential for the development of an appropriate microenvironment for human bone marrow stromal cells (HBMSCs) to proliferate and differentiate along the osteogenic lineage. In this study, we engineered a novel material ink (LAB) by blending human bone-ECM (B) with nanoclay (L, Laponite®) and alginate (A) polymers using extrusion-based deposition. The inclusion of the nanofiller and polymeric material increased the rheology, printability, and drug retention properties and, critically, the preservation of HBMSCs viability upon printing. The composite of human bone-ECM-based 3D constructs containing vascular endothelial growth factor (VEGF) enhanced vascularization after implantation in an ex vivo chick chorioallantoic membrane (CAM) model. The inclusion of bone morphogenetic protein-2 (BMP-2) with the HBMSCs further enhanced vascularization and mineralization after only seven days. This study demonstrates the synergistic combination of nanoclay with biomimetic materials (alginate and bone-ECM) to support the formation of osteogenic tissue both in vitro and ex vivo and offers a promising novel 3D bioprinting approach to personalized skeletal tissue repair. Supplementary Information: The online version contains supplementary material available at 10.1007/s42242-023-00265-z.

19.
Nanoscale ; 15(45): 18457-18472, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37941481

RESUMO

Clay nanoparticles, in particular synthetic smectites, have generated interest in the field of tissue engineering and regenerative medicine due to their utility as cross-linkers for polymers in biomaterial design and as protein release modifiers for growth factor delivery. In addition, recent studies have suggested a direct influence on the osteogenic differentiation of responsive stem and progenitor cell populations. Relatively little is known however about the mechanisms underlying nanoclay bioactivity and in particular the cellular processes involved in nanoclay-stem cell interactions. In this study we employed confocal microscopy, inductively coupled plasma mass spectrometry and transmission electron microscopy to track the interactions between clay nanoparticles and human bone marrow stromal cells (hBMSCs). In particular we studied nanoparticle cellular uptake mechanisms and uptake kinetics, intracellular trafficking pathways and the fate of endocytosed nanoclay. We found that nanoclay particles present on the cell surface as µm-sized aggregates, enter hBMSCs through clathrin-mediated endocytosis, and their uptake kinetics follow a linear increase with time during the first week of nanoclay addition. The endocytosed particles were observed within the endosomal/lysosomal compartments and we found evidence for both intracellular degradation of nanoclay and exocytosis as well as an increase in autophagosomal activity. Inhibitor studies indicated that endocytosis was required for nanoclay upregulation of alkaline phosphatase activity but a similar dependency was not observed for autophagy. This study into the nature of nanoclay-stem cell interactions, in particular the intracellular processing of nanosilicate, may provide insights into the mechanisms underlying nanoclay bioactivity and inform the successful utilisation of clay nanoparticles in biomaterial design.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas , Humanos , Osteogênese , Argila , Engenharia Tecidual , Materiais Biocompatíveis , Nanopartículas/química
20.
Adv Healthc Mater ; 12(22): e2300226, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37166052

RESUMO

Myriad lung diseases are life threatening and macrophages play a key role in both physiological and pathological processes. Macrophages have each pro-/anti-inflammatory phenotype, and each lung disease can be aggravated by over-polarized macrophage. Therefore, development of a method capable of mediating the macrophage phenotype is one of the solutions for lung disease treatment. For mediating the phenotype of macrophages, the pulmonary delivery system (PDS) is widely used due to its advantages, such as high efficiency and accessibility of the lungs. However, it has a low drug delivery efficiency ironically because of the perfect lung defense system consisting of the mucus layer and airway macrophages. In this study, zwitterion-functionalized poly(lactide-co-glycolide) (PLGA) inhalable microparticles (ZwPG) are synthesized to increase the efficiency of the PDS. The thin layer of zwitterions formed on PLGA surface has high nebulizing stability and show high anti-mucus adhesion and evasion of macrophages. As a reprogramming agent for macrophages, ZwPG containing dexamethasone (Dex) and pirfenidone (Pir) are treated to over-polarized M2 macrophages. As a result, a synergistic effect of Dex/Pir induces reprogramming of M2 macrophage to pro-inflammatory phenotypes.


Assuntos
Pneumopatias , Macrófagos , Humanos , Fenótipo , Pulmão , Nebulizadores e Vaporizadores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa