RESUMO
The nucleation and crystallization of Bi particles on two matrices, crystalline bismuth sulfide (c-Bi2S3) and amorphized bismuth titanium oxide (a-Bi12TiO20), were studied by using in situ transmission electron microscopy (TEM) analysis. The atomic structures of the Bi particles were monitored by acquiring high-resolution TEM images in real time. The Bi particles were grown on c-Bi2S3 and a-Bi12TiO20 via a two-step nucleation mechanism; dense liquid clusters were clearly observed at the initial stage of nucleation, and the coalescence of clusters was frequently observed during the growth. However, the nucleation and crystallization behaviors of Bi particles were governed by the matrix; in particular, the evolution of their morphology and atomic structure was confined on c-Bi2S3 but free from matrix effects on a-Bi12TiO20. The matrix effect on the two-step nucleation mechanism was demonstrated from a thermodynamic point of view.
RESUMO
Understanding the dynamic thermal behavior of nanomaterials based on their unique physical and chemical properties is critical for their applications. In this study, the thermal behavior of single-crystalline InAs nanowires in an amorphous Al2O3shell was investigated by conductingin situheating experiments in a transmission electron microscope. Two different thermodynamic patterns were observed during thein situheating experiments: (1) continuous vaporization and condensation simultaneously at temperatures lower than 838.15 K, and (2) pure evaporation at temperatures higher than 878.15 K. During the simultaneous condensation and vaporization in closer areas in a single InAs nanowire, the front edge of the vaporization was flat, while that of the condensation actively changed with time and temperature. Pure vaporization was conducted via layer-by-layer evaporation followed by three-dimensional vaporization at the final stage. The thermal behaviors of the InAs nanowires were demonstrated from a thermodynamic point of view.
RESUMO
Evaluating the stability of semiconductor photocatalysts is critical in the development of efficient catalysts. The morphological and microstructural behaviors of nanorod-shaped Bi2S3 semiconductors in aqueous solution were studied using a liquid cell transmission electron microscopy (TEM) technique. The rapid decomposition of Bi2S3 in water was observed under electron beam irradiation during TEM. Rounded bright spots due to a reduction in thickness were observed on the Bi2S3 nanorods at the initial stage of the decomposition, and rounded dark particles appeared outside of the nanorods in the solution, continuing the decomposition. This was confirmed by analyzing the atomic structure of the newly formed small particles, which consisted of an orthorhombic Bi2S3 phase. The stability-related decomposition of the Bi2S3 nanorods was demonstrated by considering the reduction and oxidation potentials of Bi2S3 in an aqueous solution. The effect of water radiolysis by the incident electron during TEM observations on the decomposition process was also determined by considering the time-dependent concentration behavior of the chemical species. Our study therefore reflects a novel route to evaluate the stabilities of semiconductor photocatalysts, which could ultimately solve a range of energy and environmental pollution problems.
RESUMO
The microstructural evolutions in self-catalyzed GaAs nanowires (NWs) were investigated by using in situ heating transmission electron microscopy (TEM). The morphological changes of the self-catalyst metal gallium (Ga) droplet, the GaAs NWs, and the atomic behavior at the interface between the self-catalyst metal gallium and GaAs NWs were carefully studied by analysis of high-resolution TEM images. The microstructural change of the Ga-droplet/GaAs-NWs started at a low temperature of â¼200 °C. Formation and destruction of atomic layers were observed at the Ga/GaAs interface and slow depletion of the Ga droplet was detected in the temperature range investigated. Above 300 °C, the evolution process dramatically changed with time: The Ga droplet depleted rapidly and fast growth of zinc-blende (ZB) GaAs structures were observed in the droplet. The Ga droplet was completely removed with time and temperature. When the temperature reached â¼600 °C, the decomposition of GaAs was detected. This process began in the wurtzite (WZ) structure and propagated to the ZB structure. The morphological and atomistic behaviors in self-catalyzed GaAs NWs were demonstrated based on thermodynamic considerations, in addition to the effect of the incident electron beam in TEM. Finally, GaAs decomposition was demonstrated in terms of congruent vaporization.
RESUMO
Intestinal organoids have recently emerged as an in vitro model relevant to the gut system owing to their recapitulation of the native intestinal epithelium with crypt-villus architecture. However, it is unclear whether intestinal organoids reflect the physiology of the in vivo stress response. Here, we systemically investigated the radiation response in organoids and animal models using mesenchymal stem cell-conditioned medium (MSC-CM), which contains secreted paracrine factors. Irradiated organoids exhibited sequential induction of viability loss and regrowth after irradiation (within 12 days), similar to the response of the native intestinal epithelium. Notably, treatment with MSC-CM facilitated the reproliferation of intestinal stem cells (ISCs) and restoration of damaged crypt-villus structures in both models. Furthermore, Wnt/Notch signaling pathways were commonly upregulated by MSC-CM, but not radiation, and pharmacologically selective inhibition of Wnt or Notch signaling attenuated the enhanced recovery of irradiated organoids, with increases in ISCs, following MSC-CM treatment. Interestingly, the expression of Wnt4, Wnt7a, and active ß-catenin was increased, but not notch family members, in MSC-CM-treated organoid after irradiation. Treatment of recombinant mouse Wnt4 and Wnt7a after irradiation improved to some extent intestinal epithelial regeneration both in vitro and in vivo. Overall, these results suggested that intestinal organoids recapitulated the physiological stress response of the intestinal epithelium in vivo. Thus, our findings provided important insights into the physiology of intestinal organoids and may contribute to the development of strategies to enhance the functional maturation of engineered organoids.
Assuntos
Mucosa Intestinal/metabolismo , Células-Tronco Mesenquimais/metabolismo , Organoides/metabolismo , Regeneração/efeitos dos fármacos , Raios X/efeitos adversos , Animais , Meios de Cultivo Condicionados , Humanos , Masculino , Camundongos , Regeneração/efeitos da radiaçãoRESUMO
In this work, for the first time, we have made InN/In2O3 core-shell heterostructure by hydrogen plasma treatment. InN nanorods (NRs) were grown by using plasma-assisted molecular beam epitaxy, and hydrogen plasma treatment was performed by using reactive ion etching at room temperature. From x-ray photoemission spectroscopy studies, it was observed that the bonding partner of In changes from N to O and N 1s completely disappeared in the hydrogenated InN NRs. Furthermore, high-resolution transmission electron microscopy revealed the formation of InN/In2O3 core-shell NRs by hydrogenation plasma treatment. The resistance of pristine InN NRs was decreased in NO2 ambient. Interestingly, the resistance of the InN/In2O3 core-shell was increased while introducing NO2 gas. InN NR surface exhibits downward band bending due to the electron accumulation, in NO2 ambient, and the surface band bending was decreased due to the increase in the bulk conduction channel. This reversed gas sensing behavior in InN/In2O3 core-shell NRs was attributed to the increase in depletion layer while reducing the conduction channel width by the absorption of NO2. The InN/In2O3 coreshell NRs exhibited a response of 22.43% at 50 °C, which was 5.11 times higher than that of pristine InN NRs.
RESUMO
Recently, III-nitride semiconductor nanostructures, especially InGaN/GaN quantum well nanorods (NRs), have been established as a promising material of choice for nanoscale optoelectronics and photoelectrochemical (PEC) water-splitting applications. Due to the large number of surface states, III-nitride NRs suffer from low quantum efficiency. Therefore, control of the surface states is necessary to improve device performance in real-time applications. In this work, we investigated the effect of hydrogen plasma treatment on the optical properties of InGaN/GaN single-quantum-well (SQW) NRs. The low-temperature photoluminescence (PL) studies revealed that yellow and green emissions overlapped and the yellow band is more dominant in the pristine InGaN/GaN SQW NRs. However, the emission corresponding to yellow luminescence was strongly suppressed and the green emission is more intensified in hydrogenated InGaN/GaN SQW NRs. Furthermore, the time-resolved PL spectroscopy studies revealed that the carrier lifetimes of hydrogenated InGaN/GaN SQW NRs are relatively short compared to the pristine InGaN/GaN SQW, indicating the effective reduction of non-radiative centers. From the PEC measurement, the photocurrent density of hydrogenated InGaN/GaN SQW NRs in the H2SO4 solution is found to be 5 mA cm-2 at -0.48 V versus reversible hydrogen electrode, which is 3.5-fold larger than that of pristine ones. These findings shed new light on the significance of surface treatment on the optical properties and thus nanostructured photoelectrodes for PEC applications.
RESUMO
Although radiotherapy plays a crucial in the management of pelvic tumors, its toxicity on surrounding healthy tissues such as the small intestine, colon, and rectum is one of the major limitations associated with its use. In particular, proctitis is a major clinical complication of pelvic radiotherapy. Recent evidence suggests that endothelial injury significantly affects the initiation of radiation-induced inflammation. The damaged endothelial cells accelerate immune cell recruitment by activating the expression of endothelial adhesive molecules, which participate in the development of tissue damage. Pravastatin, a cholesterol lowering drug, exerts persistent anti-inflammatory and anti-thrombotic effects on irradiated endothelial cells and inhibits the interaction of leukocytes and damaged endothelial cells. Here, we aimed to investigate the effects of pravastatin on radiation-induced endothelial damage in human umbilical vein endothelial cell and a murine proctitis model. Pravastatin attenuated epithelial damage and inflammatory response in irradiated colorectal lesions. In particular, pravastatin improved radiation-induced endothelial damage by regulating thrombomodulin (TM) expression. In addition, exogenous TM inhibited leukocyte adhesion to the irradiated endothelial cells. Thus, pravastatin can inhibit endothelial damage by inducing TM, thereby alleviating radiation proctitis. Therefore, we suggest that pharmacological modulation of endothelial TM may limit intestinal inflammation after irradiation.
Assuntos
Células Endoteliais/citologia , Pravastatina/administração & dosagem , Proctite/tratamento farmacológico , Trombomodulina/metabolismo , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Endoteliais/efeitos da radiação , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/metabolismo , Camundongos , Pravastatina/farmacologia , Proctite/etiologia , Células THP-1RESUMO
Hyaluronic acid synthase 2 (HAS2) is suggested to play a critical role in malignancy and is abnormally expressed in many carcinomas. However, its role in colorectal cancer (CRC) malignancy and specific signaling mechanisms remain obscure. Here, we report that HAS2 was markedly increased in both CRC tissue and malignant CRC cell lines. Depletion of HAS2 in HCT116 and DLD1 cells, which express high levels of HAS2, critically increased sensitivity of radiation/oxaliplatin-mediated apoptotic cell death. Moreover, downregulation of HAS2 suppressed migration, invasion and metastasis in nude mice. Conversely, ectopic overexpression of HAS2 in SW480 cells, which express low levels of HAS2, showed the opposite effect. Notably, HAS2 loss- and gain-of-function experiments revealed that it regulates CRC malignancy through TGF-ß expression and SMAD2/Snail downstream components. Collectively, our findings suggest that HAS2 contributes to malignant phenotypes of CRC, at least partly, through activation of the TGF-ß signaling pathway, and shed light on the novel mechanisms behind the constitutive activation of HAS2 signaling in CRC, thereby highlighting its potential as a therapeutic target.
Assuntos
Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Hialuronan Sintases/metabolismo , Tolerância a Radiação , Transdução de Sinais , Animais , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HCT116 , Humanos , Hialuronan Sintases/genética , Camundongos , Camundongos Nus , Invasividade Neoplásica , Transplante de Neoplasias , Análise Serial de Tecidos , Fator de Crescimento Transformador beta/metabolismo , Regulação para CimaRESUMO
Recurrence and chemoresistance in colorectal cancer remain important issues for patients treated with conventional therapeutics. Metformin and phenformin, previously used in the treatment of diabetes, have been shown to have anticancer effects in various cancers, including breast, lung and prostate cancers. However, their molecular mechanisms are still unclear. In this study, we examined the effects of these drugs in chemoresistant rectal cancer cell lines. We found that SW837 and SW1463 rectal cancer cells were more resistant to ionizing radiation and 5-fluorouracil than HCT116 and LS513 colon cancer cells. In addition, metformin and phenformin increased the sensitivity of these cell lines by inhibiting cell proliferation, suppressing clonogenic ability and increasing apoptotic cell death in rectal cancer cells. Signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling pathways were more activated in rectal cancer cells, and inhibition of signal transducer and activator of transcription 3 expression using an inhibitor or siRNA sensitized rectal cancer cells to chemoresistant by inhibition of the expression of antiapoptotic proteins, such as X-linked inhibitor of apoptosis, survivin and cellular inhibitor of apoptosis protein 1. Moreover, metformin and phenformin inhibited cell migration and invasion by suppression of transforming growth factor ß receptor 2-mediated Snail and Twist expression in rectal cancer cells. Therefore, metformin and phenformin may represent a novel strategy for the treatment of chemoresistant rectal cancer by targeting signal transducer and activator of transcription 3 and transforming growth factor-ß/Smad signaling.
Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metformina/farmacologia , Fenformin/farmacologia , Neoplasias Retais/terapia , Transdução de Sinais/efeitos dos fármacos , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Movimento Celular/efeitos da radiação , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Quimiorradioterapia/métodos , Colo/patologia , Neoplasias do Colo/patologia , Neoplasias do Colo/terapia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos da radiação , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Humanos , Masculino , Metformina/uso terapêutico , Camundongos , Camundongos Nus , Recidiva Local de Neoplasia , Fenformin/uso terapêutico , Neoplasias Retais/patologia , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos da radiação , Proteínas Smad/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
We investigated the elastic modulus behavior of crystalline InAs/amorphous Al2O3 core-shell heterostructured nanowires with shell thicknesses varying between 10 and 90 nm by conducting in situ tensile tests inside a transmission electron microscope (TEM). Counterintuitively, the elastic modulus behaviors of InAs/Al2O3 core-shell nanowires differ greatly from those of bulk-scale composite materials, free from size effects. According to our results, the elastic modulus of InAs/Al2O3 core-shell nanowires increases, peaking at a shell thickness of 40 nm, and then decreases in the range of 50-90 nm. This abnormal behavior is attributed to the continuous decrease in the elastic modulus of the Al2O3 shell as the thickness increases, which is caused by changes in the atomic/electronic structure during the atomic layer deposition process and the relaxation of residual stress/strain in the shell transferred from the interfacial mismatch between the core and shell materials. A novel method for estimating the elastic modulus of the shell in a heterostructured core-shell system was suggested by considering these two effects, and the predictions from the suggested method coincided well with the experimental results. We also found that the former and latter effects account for 89% and 11% of the change in the elastic modulus of the shell. This study provides new insight by showing that the size dependency, which is caused by the inhomogeneity of the atomic/electronic structure and the residual stress/strain, must be considered to evaluate the mechanical properties of heterostructured nanowires.
RESUMO
We investigated the effects of strain on the electronic structures of InAsxP1-x using quantum mechanical density functional theory calculations. The electronic band gap and electron effective mass decreased with the increase of the uniaxial tensile strain along the [0001] direction of wurtzite InAs0.75P0.25. Therefore, faster electron movements are expected. These theoretical results are in good agreement with the experimental measurements of InAs0.75P0.25 nanowire.
RESUMO
Selectively activated inorganic synaptic devices, showing a high on/off ratio, ultrasmall dimensions, low power consumption, and short programming time, are required to emulate the functions of high-capacity and energy-efficient reconfigurable human neural systems combining information storage and processing ( Li et al. Sci. Rep. 2014 , 4 , 4096 ). Here, we demonstrate that such a synaptic device is realized using a Ag/PbZr0.52Ti0.48O3 (PZT)/La0.8Sr0.2MnO3 (LSMO) ferroelectric tunnel junction (FTJ) with ultrathin PZT (thickness of â¼4 nm). Ag ion migration through the very thin FTJ enables a large on/off ratio (107) and low energy consumption (potentiation energy consumption = â¼22 aJ and depression energy consumption = â¼2.5 pJ). In addition, the simple alignment of the downward polarization in PZT selectively activates the synaptic plasticity of the FTJ and the transition from short-term plasticity to long-term potentiation.
RESUMO
The electromechanical properties of ternary InAsP nanowires (NWs) were investigated by applying a uniaxial tensile strain in a transmission electron microscope (TEM). The electromechanical properties in our examined InAsP NWs were governed by the piezoresistive effect. We found that the electronic transport of the InAsP NWs is dominated by space-charge-limited transport, with a I ∞ V2 relation. Upon increasing the tensile strain, the electrical current in the NWs increases linearly, and the piezoresistance gradually decreases nonlinearly. By analyzing the space-charge-limited I-V curves, we show that the electromechanical response is due to a mobility that increases with strain. Finally, we use dynamical measurements to establish an upper limit on the time scale for the electromechanical response.
RESUMO
Metastasis of breast cancer is promoted by epithelial-mesenchymal transition (EMT). Emerging evidence suggests that STAT3 is a critical signaling node in EMT and is constitutively activated in many carcinomas, including breast cancer. However, its signaling mechanisms underlying persistent activation of STAT3 associated with EMT remain obscure. Here, we report that PIM2 promotes activation of STAT3 through induction of cytokines. Activation of STAT3 caused an increase in PIM2 expression, implicating a positive feedback loop between PIM2 and STAT3. In agreement, targeting of either PIM2, STAT3 or PIM2-dependent cytokines suppressed EMT-associated migratory and invasive properties through inhibition of ZEB1. Taken together, our findings identify the signaling mechanisms underlying the persistent activation of STAT3 and the oncogenic role of PIM2 in EMT in breast cancer.
Assuntos
Neoplasias da Mama/patologia , Transição Epitelial-Mesenquimal , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fator de Transcrição STAT3/fisiologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Feminino , Proteínas de Homeodomínio/fisiologia , Humanos , Interleucina-1alfa/metabolismo , Interleucina-8/metabolismo , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de ZincoRESUMO
A drastic change in the conductivity of strained BiFeO3 (BFO) films is observed after illuminating them with above-band gap light. This has been termed as persistent photoconductivity. The enhanced conductivity decays exponentially with time. A trapping character of the sub-band levels and their subsequent gradual emptying is proposed as a possible mechanism.
RESUMO
INTRODUCTION: Despite numerous studies of helicopter emergency medical services, few reports have examined the outcomes of patients transported by helicopter across the sea from isolated islands. We analyzed helicopter transportation from the isolated Ulleung Island, which lies to the east of the South Korean mainland. METHODS: This study included 284 patients transported from the Ulleung Island to mainland hospitals between January 2007 and March 2013. Emergency Severity Index and Injury Severity Score were calculated. Hospital stay time and flight duration was measured. Data were analyzed using Student's t-test. RESULTS: The mean age of the patients was 53.5 years. Of the transported patients, 19.0% were visitors to the island and 29.6% were traumatically injured. The mortality rate after transportation was 11.6% (33 patients). CONCLUSION: Helicopter transportation has been very beneficial for the treatment of emergency patients on Ulleung Island. A national level of interest and investment is required to improve this service.
Assuntos
Resgate Aéreo/organização & administração , Ilhas , Transporte de Pacientes , Bases de Dados Factuais , Humanos , Pessoa de Meia-Idade , Estudos de Casos Organizacionais , República da Coreia , Estudos RetrospectivosRESUMO
We computed the phase diagram of zigzag graphene nanoribbons as a function of on-site repulsion, doping, and disorder strength. The topologically ordered phase undergoes topological phase transitions into crossover phases, which are new disordered phases with non-universal topological entanglement entropy that exhibits significant variance. We explored the nature of non-local correlations in both the topologically ordered and crossover phases. In the presence of localization effects, strong on-site repulsion and/or doping weaken non-local correlations between the opposite zigzag edges of the topologically ordered phase. In one of the crossover phases, bothe-/2solitonic fractional charges and spin-charge separation were absent; however, charge-transfer correlations between the zigzag edges were possible. Another crossover phase contains solitonice-/2fractional charges but lacks charge transfer correlations. We also observed properties of non-topological, strongly disordered, and strongly repulsive phases. Each phase on the phase diagram exhibits a different zigzag-edge structure. Additionally, we investigated the tunneling of solitonic fractional charges under an applied voltage between the zigzag edges of undoped topologically ordered zigzag ribbons, and found that it may lead to a zero-bias tunneling anomaly.
RESUMO
Photocuring kinetics in photopolymerization-based three-dimensional (3D) printing processes have gained significant attention because they determine the final dimension accuracy of the printed structures. In this study, the curing kinetics of liquid-light-curable resins, including water-dispersed graphene oxide (GO) and ultraviolet (UV)-cured acrylic resins, were investigated during digital light processing (DLP) 3D printing. Various stable composites of water-dispersed GO and UV-cured acrylic resin were prepared to fabricate 3D structures for cure-depth measurements. Several factors, including the UV-exposure conditions, photoinitiator concentration, and composition of the photopolymer resin, were found to significantly affect the cure-depth characteristics of the printed structures. The photocuring depth of the polymeric resin system was investigated as a function of the photoinitiator concentration. In addition, the study showed that the introduction of GO played a significant role in controlling the performance of the highly cross-linked network and the thickness of the cured layer. The curing characteristics of functional photocurable polymer-based DLP 3D printing contribute to process development and improvement of the quality of printed microstructures for industrial applications.
RESUMO
Complex oxide heterointerfaces contain a rich playground of novel physical properties and functionalities, which give rise to emerging technologies. Among designing and controlling the functional properties of complex oxide film heterostructures, vertically aligned nanostructure (VAN) films using a self-assembling bottom-up deposition method presents great promise in terms of structural flexibility and property tunability. Here, the bottom-up self-assembly is extended to a new approach using a mixture containing a 2Dlayer-by-layer film growth, followed by a 3D VAN film growth. In this work, the two-phase nanocomposite thin films are based on LaAlO3 :LaBO3 , grown on a lattice-mismatched SrTiO3001 (001) single crystal. The 2D-to-3D transient structural assembly is primarily controlled by the composition ratio, leading to the coexistence of multiple interfacial properties, 2D electron gas, and magnetic anisotropy. This approach provides multidimensional film heterostructures which enrich the emergent phenomena for multifunctional applications.