Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Immunity ; 53(1): 217-232.e5, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32668225

RESUMO

B cells are capable of a wide range of effector functions including antibody secretion, antigen presentation, cytokine production, and generation of immunological memory. A consistent strategy for classifying human B cells by using surface molecules is essential to harness this functional diversity for clinical translation. We developed a highly multiplexed screen to quantify the co-expression of 351 surface molecules on millions of human B cells. We identified differentially expressed molecules and aligned their variance with isotype usage, VDJ sequence, metabolic profile, biosynthesis activity, and signaling response. Based on these analyses, we propose a classification scheme to segregate B cells from four lymphoid tissues into twelve unique subsets, including a CD45RB+CD27- early memory population, a class-switched CD39+ tonsil-resident population, and a CD19hiCD11c+ memory population that potently responds to immune activation. This classification framework and underlying datasets provide a resource for further investigations of human B cell identity and function.


Assuntos
Subpopulações de Linfócitos B/classificação , Subpopulações de Linfócitos B/imunologia , Isotipos de Imunoglobulinas/metabolismo , Proteínas de Membrana/metabolismo , 5'-Nucleotidase/metabolismo , Apirase/metabolismo , Antígeno CD11c/metabolismo , Feminino , Proteínas Ligadas por GPI/metabolismo , Humanos , Memória Imunológica/imunologia , Antígenos Comuns de Leucócito/metabolismo , Pessoa de Meia-Idade , Transdução de Sinais/imunologia , Receptor fas/metabolismo
2.
Development ; 144(8): 1412-1424, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28242612

RESUMO

Mesoderm induction begins during gastrulation. Recent evidence from several vertebrate species indicates that mesoderm induction continues after gastrulation in neuromesodermal progenitors (NMPs) within the posteriormost embryonic structure, the tailbud. It is unclear to what extent the molecular mechanisms of mesoderm induction are conserved between gastrula and post-gastrula stages of development. Fibroblast growth factor (FGF) signaling is required for mesoderm induction during gastrulation through positive transcriptional regulation of the T-box transcription factor brachyury We find in zebrafish that FGF is continuously required for paraxial mesoderm (PM) induction in post-gastrula NMPs. FGF signaling represses the NMP markers brachyury (ntla) and sox2 through regulation of tbx16 and msgn1, thereby committing cells to a PM fate. FGF-mediated PM induction in NMPs functions in tight coordination with canonical Wnt signaling during the epithelial to mesenchymal transition (EMT) from NMP to mesodermal progenitor. Wnt signaling initiates EMT, whereas FGF signaling terminates this event. Our results indicate that germ layer induction in the zebrafish tailbud is not a simple continuation of gastrulation events.


Assuntos
Transição Epitelial-Mesenquimal , Fatores de Crescimento de Fibroblastos/metabolismo , Mesoderma/embriologia , Sistema Nervoso/citologia , Sistema Nervoso/embriologia , Células-Tronco/citologia , Cauda/embriologia , Via de Sinalização Wnt , Sequência de Aminoácidos , Animais , Gástrula/metabolismo , Imageamento Tridimensional , Mesoderma/citologia , Mesoderma/metabolismo , Células-Tronco/metabolismo , Proteínas com Domínio T , Vimentina/química , Vimentina/metabolismo , Xenopus laevis/embriologia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra
3.
Cytometry A ; 91(2): 180-189, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28094900

RESUMO

To quantify visual and spatial information in single cells with a throughput of thousands of cells per second, we developed Subcellular Localization Assay (SLA). This adaptation of Proximity Ligation Assay expands the capabilities of flow cytometry to include data relating to localization of proteins to and within organelles. We used SLA to detect the nuclear import of transcription factors across cell subsets in complex samples. We further measured intranuclear re-localization of target proteins across the cell cycle and upon DNA damage induction. SLA combines multiple single-cell methods to bring about a new dimension of inquiry and analysis in complex cell populations. © 2017 International Society for Advancement of Cytometry.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Análise de Célula Única/métodos , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Dano ao DNA/genética , Humanos , Transporte Proteico/genética , Frações Subcelulares/ultraestrutura
4.
Patterns (N Y) ; 3(8): 100536, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36033591

RESUMO

Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction captures the structure and heterogeneity of the original dataset, creating low-dimensional visualizations that contribute to the human understanding of data. Existing algorithms are typically unsupervised, using measured features to generate manifolds, disregarding known biological labels such as cell type or experimental time point. We repurpose the classification algorithm, linear discriminant analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations of predictors that optimally separate a priori classes, enabling the study of specific aspects of cellular heterogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this computationally efficient approach generates non-stochastic, interpretable axes amenable to diverse biological processes such as differentiation over time and cell cycle. We benchmark HSS-LDA against several popular dimensionality-reduction algorithms and illustrate its utility and versatility for the exploration of single-cell mass cytometry, transcriptomics, and chromatin accessibility data.

5.
Cancer Res ; 82(16): 2829-2837, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35749589

RESUMO

Subunits from the chromatin remodelers mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) are mutated, deleted, or amplified in more than 40% of cancers. Understanding their functions in normal cells and the consequences of cancerous alterations will provide insight into developing new targeted therapies. Here we examined whether mSWI/SNF mutations increase cellular sensitivity to specific drugs. Taking advantage of the DepMap studies, we demonstrate that cancer cells harboring mutations of specific mSWI/SNF subunits exhibit a genetic dependency on translation factors and are sensitive to translation pathway inhibitors. Furthermore, mSWI/SNF subunits were present in the cytoplasm and interacted with the translation initiation machinery, and short-term inhibition and depletion of specific subunits decreased global translation, implicating a direct role for these factors in translation. Depletion of specific mSWI/SNF subunits also increased sensitivity to mTOR-PI3K inhibitors. In patient-derived breast cancer samples, mSWI/SNF subunits expression in both the nucleus and the cytoplasm was substantially altered. In conclusion, an unexpected cytoplasmic role for mSWI/SNF complexes in translation suggests potential new therapeutic opportunities for patients afflicted by cancers demonstrating alterations in their subunits. SIGNIFICANCE: This work establishes direct functions for mSWI/SNF in translation and demonstrates that alterations in mSWI/SNF confer a therapeutic vulnerability to translation pathway inhibitors in cancer cells.


Assuntos
Proteínas Cromossômicas não Histona , Neoplasias , Animais , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Humanos , Mamíferos/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases , Ribossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Nat Cancer ; 2(1): 18-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121890

RESUMO

Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies. Systemically administered human epidermal growth factor receptor 2 (HER2)-targeted ISACs were well tolerated and triggered a localized immune response in the tumor microenvironment that resulted in tumor clearance and immunological memory. Mechanistically, ISACs required tumor antigen recognition, Fcγ-receptor-dependent phagocytosis and TLR-mediated activation to drive tumor killing by myeloid cells and subsequent T-cell-mediated antitumor immunity. ISAC-mediated immunological memory was not limited to the HER2 ISAC target antigen since ISAC-treated mice were protected from rechallenge with the HER2- parental tumor. These results provide a strong rationale for the clinical development of ISACs.


Assuntos
Imunoterapia , Neoplasias , Imunidade Adaptativa , Animais , Antígenos de Neoplasias , Imunoterapia/métodos , Camundongos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
7.
Nat Commun ; 10(1): 1185, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30862852

RESUMO

Cellular products derived from the activity of DNA, RNA, and protein synthesis collectively control cell identity and function. Yet there is little information on how these three biosynthesis activities are coordinated during transient and sparse cellular processes, such as activation and differentiation. Here, we describe Simultaneous Overview of tri-Molecule Biosynthesis (SOM3B), a molecular labeling and simultaneous detection strategy to quantify DNA, RNA, and protein synthesis in individual cells. Comprehensive interrogation of biosynthesis activities during transient cell states, such as progression through cell cycle or cellular differentiation, is achieved by partnering SOM3B with parallel quantification of select biomolecules with conjugated antibody reagents. Here, we investigate differential de novo DNA, RNA, and protein synthesis dynamics in transformed human cell lines, primary activated human immune cells, and across the healthy human hematopoietic continuum, all at a single-cell resolution.


Assuntos
DNA/biossíntese , Biossíntese de Proteínas , RNA/biossíntese , Análise de Célula Única/métodos , Medula Óssea/metabolismo , Ciclo Celular , Células HEK293 , Células HeLa , Voluntários Saudáveis , Humanos , Células Jurkat , Leucócitos Mononucleares , Cultura Primária de Células , Coloração e Rotulagem/métodos
8.
Nat Commun ; 10(1): 5587, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811131

RESUMO

Elucidating the spectrum of epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) states in clinical samples promises insights on cancer progression and drug resistance. Using mass cytometry time-course analysis, we resolve lung cancer EMT states through TGFß-treatment and identify, through TGFß-withdrawal, a distinct MET state. We demonstrate significant differences between EMT and MET trajectories using a computational tool (TRACER) for reconstructing trajectories between cell states. In addition, we construct a lung cancer reference map of EMT and MET states referred to as the EMT-MET PHENOtypic STAte MaP (PHENOSTAMP). Using a neural net algorithm, we project clinical samples onto the EMT-MET PHENOSTAMP to characterize their phenotypic profile with single-cell resolution in terms of our in vitro EMT-MET analysis. In summary, we provide a framework to phenotypically characterize clinical samples in the context of in vitro EMT-MET findings which could help assess clinical relevance of EMT in cancer in future studies.


Assuntos
Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Pulmonares/patologia , Algoritmos , Linhagem Celular Tumoral , Biologia Computacional , Citofotometria/métodos , Células Epiteliais/patologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Fenótipo , Biologia de Sistemas , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa