Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiome ; 10(1): 220, 2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36503599

RESUMO

BACKGROUND: Endozoicomonas bacteria symbiosis with various marine organisms is hypothesized as a potential indicator of health in corals. Although many amplicon analyses using 16S rRNA gene have suggested the diversity of Endozoicomonas species, genome analysis has been limited due to contamination of host-derived sequences and difficulties in culture and metagenomic analysis. Therefore, the evolutionary and functional potential of individual Endozoicomonas species symbiotic with the same coral species remains unresolved. RESULTS: In this study, we applied a novel single-cell genomics technique using droplet microfluidics to obtain single-cell amplified genomes (SAGs) for uncultured coral-associated Endozoicomonas spp. We obtained seven novel Endozoicomonas genomes and quantitative bacterial composition from Acropora tenuis corals at four sites in Japan. Our quantitative 16S rRNA gene and comparative genomic analysis revealed that these Endozoicomonas spp. belong to different lineages (Clade A and Clade B), with widely varying abundance among individual corals. Furthermore, each Endozoicomonas species possessed various eukaryotic-like genes in clade-specific genes. It was suggested that these eukaryotic-like genes might have a potential ability of different functions in each clade, such as infection of the host coral or suppression of host immune pathways. These Endozoicomonas species may have adopted different host adaptation strategies despite living symbiotically on the same coral. CONCLUSIONS: This study suggests that coral-associated Endozoicomonas spp. on the same species of coral have different evolutional strategies and functional potentials in each species and emphasizes the need to analyze the genome of each uncultured strain in future coral-Endozoicomonas relationships studies. Video Abstract.


Assuntos
Antozoários , Gammaproteobacteria , Animais , Antozoários/microbiologia , RNA Ribossômico 16S/genética , Adaptação ao Hospedeiro , Gammaproteobacteria/genética , Simbiose , Bactérias , Genômica , Recifes de Corais
2.
G3 (Bethesda) ; 11(2)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33621334

RESUMO

Corals of the family Acroporidae are key structural components of reefs that support the most diverse marine ecosystems. Due to increasing anthropogenic stresses, coral reefs are in decline. Along the coast of Okinawa, Japan, three different color morphs of Acropora tenuis have been recognized for decades. These include brown (N morph), yellow green (G), and purple (P) forms. The tips of axial polyps of each morph exhibit specific fluorescence spectra. This attribute is inherited asexually, and color morphs do not change seasonally. In Okinawa Prefecture, during the summer of 2017, N and P morphs experienced bleaching, in which many N morphs died. Dinoflagellates (Symbiodiniaceae) are essential partners of scleractinian corals, and photosynthetic activity of symbionts was reduced in N and P morphs. In contrast, G morphs successfully withstood the stress. Examination of the clade and type of Symbiodiniaceae indicated that the three color-morphs host similar sets of Clade-C symbionts, suggesting that beaching of N and P morphs is unlikely attributable to differences in the clade of Symbiodiniaceae the color morphs hosted. Fluorescent proteins play pivotal roles in physiological regulation of corals. Since the A. tenuis genome has been decoded, we identified five genes for green fluorescent proteins (GFPs), two for cyan fluorescent proteins (CFPs), three for red fluorescent proteins (RFPs), and seven genes for chromoprotein (ChrP). A summer survey of gene expression profiles under outdoor aquarium conditions demonstrated that (a) expression of CFP and REP was quite low during the summer in all three morphs, (b) P morphs expressed higher levels of ChrP than N and G morphs, (c) both N and G morphs expressed GFP more highly than P morphs, and (d) GFP expression in N morphs was reduced during summer whereas G morphs maintained high levels of GFP expression throughout the summer. Although further studies are required to understand the biological significance of these color morphs of A. tenuis, our results suggest that thermal stress resistance is modified by genetic mechanisms that coincidentally lead to diversification of color morphs of this coral.


Assuntos
Antozoários , Dinoflagellida , Animais , Recifes de Corais , Ecossistema , Estresse Fisiológico , Simbiose
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa