Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Radiol ; 4: 1332535, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301168

RESUMO

Recent advancements in artificial intelligence (AI) and machine learning offer numerous opportunities in musculoskeletal radiology to potentially bolster diagnostic accuracy, workflow efficiency, and predictive modeling. AI tools have the capability to assist radiologists in many tasks ranging from image segmentation, lesion detection, and more. In bone and soft tissue tumor imaging, radiomics and deep learning show promise for malignancy stratification, grading, prognostication, and treatment planning. However, challenges such as standardization, data integration, and ethical concerns regarding patient data need to be addressed ahead of clinical translation. In the realm of musculoskeletal oncology, AI also faces obstacles in robust algorithm development due to limited disease incidence. While many initiatives aim to develop multitasking AI systems, multidisciplinary collaboration is crucial for successful AI integration into clinical practice. Robust approaches addressing challenges and embodying ethical practices are warranted to fully realize AI's potential for enhancing diagnostic accuracy and advancing patient care.

2.
Front Radiol ; 3: 1326831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249158

RESUMO

Artificial intelligence (AI) applications in breast imaging span a wide range of tasks including decision support, risk assessment, patient management, quality assessment, treatment response assessment and image enhancement. However, their integration into the clinical workflow has been slow due to the lack of a consensus on data quality, benchmarked robust implementation, and consensus-based guidelines to ensure standardization and generalization. Contrast-enhanced mammography (CEM) has improved sensitivity and specificity compared to current standards of breast cancer diagnostic imaging i.e., mammography (MG) and/or conventional ultrasound (US), with comparable accuracy to MRI (current diagnostic imaging benchmark), but at a much lower cost and higher throughput. This makes CEM an excellent tool for widespread breast lesion characterization for all women, including underserved and minority women. Underlining the critical need for early detection and accurate diagnosis of breast cancer, this review examines the limitations of conventional approaches and reveals how AI can help overcome them. The Methodical approaches, such as image processing, feature extraction, quantitative analysis, lesion classification, lesion segmentation, integration with clinical data, early detection, and screening support have been carefully analysed in recent studies addressing breast cancer detection and diagnosis. Recent guidelines described by Checklist for Artificial Intelligence in Medical Imaging (CLAIM) to establish a robust framework for rigorous evaluation and surveying has inspired the current review criteria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa