Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 287(48): 40745-57, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23043102

RESUMO

BACKGROUND: Store-operated Ca(2+) entry is important for cell migration. RESULTS: This study presents characterization of localization and roles of Orai1, STIM1, and PLA2g6 in adhesion dynamics during cell migration. CONCLUSION: Orai1 and PLA2g6 are involved in adhesion formation at the front, whereas STIM1 participates in both adhesion formation and disassembly. SIGNIFICANCE: Results uncovered new parameters of Orai1, STIM1, and PLA2g6 involvement in cell migration. Store-operated Ca(2+) entry and its major determinants are known to be important for cell migration, but the mechanism of their involvement in this complex process is unknown. This study presents a detailed characterization of distinct roles of Orai1, STIM1, and PLA2g6 in focal adhesion (FA) formation and migration. Using HEK293 cells, we discovered that although molecular knockdown of Orai1, STIM1, or PLA2g6 resulted in a similar reduction in migration velocity, there were profound differences in their effects on number, localization, and lifetime of FAs. Knockdown of STIM1 caused an increase in lifetime and number of FAs, their redistribution toward lamellae region, and an increase in cell tail length. In contrast, the number of FAs in Orai1- or PLA2g6-deficient cells was significantly reduced, and FAs accumulated closer to the leading edge. Assembly rate and Vinculin phosphorylation of FAs was similarly reduced in Orai1, PLA2g6, or STIM1-deficient cells. Although Orai1 and PLA2g6 accumulated and co-localized at the leading edge, STIM1 distribution was more complex. We found STIM1 protrusions in lamellipodia, which co-localized with FAs, whereas major accumulation could be seen in central and retracting parts of the cell. Interestingly, knockdown of Orai1 and PLA2g6 produced similar and non-additive effect on migration, whereas knockdown of STIM1 simultaneously with either Orai1 or PLA2g6 produced additional inhibition. Together these data suggest that although Orai1, PLA2g6, and STIM1 play major roles in formation of new FAs at the leading edge, STIM1 may also be involved in Orai1- and PLA2g6-independent disassembly of FAs in the back of cells.


Assuntos
Canais de Cálcio/metabolismo , Movimento Celular , Adesões Focais/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Fosfolipases A2/metabolismo , Cálcio/metabolismo , Canais de Cálcio/genética , Adesões Focais/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Neoplasias/genética , Proteína ORAI1 , Fosfolipases A2/genética , Molécula 1 de Interação Estromal
2.
J Immunol ; 185(6): 3369-78, 2010 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-20720205

RESUMO

Intercellular communication is an essential process in stimulating lymphocyte development and in activating and shaping an immune response. B cell development requires cell-to-cell contact with and cytokine production by bone marrow stromal cells. However, this intimate relationship also may be responsible for the transfer of death-inducing molecules to the B cells. 7,12-Dimethylbenz[a]anthracene (DMBA), a prototypical polycyclic aromatic hydrocarbon, activates caspase-3 in pro/pre-B cells in a bone marrow stromal cell-dependent manner, resulting in apoptosis. These studies were designed to examine the hypothesis that an intrinsic apoptotic pathway is activated by DMBA and that the ultimate death signal is a DMBA metabolite generated by the stromal cells and transferred to the B cells. Although a loss of mitochondrial membrane potential did not occur in the DMBA/stromal cell-induced pathway, cytochrome c release was stimulated in B cells. Caspase-9 was activated, and formation of the apoptosome was required to support apoptosis, as demonstrated by the suppression of death in Apaf-1(fog) mutant pro-B cells. Investigation of signaling upstream of the mitochondria demonstrated an essential role for p53. Furthermore, DMBA-3,4-dihydrodiol-1,2-epoxide, a DNA-reactive metabolite of DMBA, was sufficient to upregulate p53, induce caspase-9 cleavage, and initiate B cell apoptosis in the absence of stromal cells, suggesting that production of this metabolite by the stromal cells and transfer to the B cells are proximal events in triggering apoptosis. Indeed, we provide evidence that metabolite transfer from bone marrow stromal cells occurs through membrane exchange, which may represent a novel communication mechanism between developing B cells and stromal cells.


Assuntos
9,10-Dimetil-1,2-benzantraceno/farmacologia , Apoptose/imunologia , Subpopulações de Linfócitos B/efeitos dos fármacos , Subpopulações de Linfócitos B/imunologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/imunologia , Comunicação Celular/imunologia , Transdução de Sinais/imunologia , 9,10-Dimetil-1,2-benzantraceno/metabolismo , Animais , Apoptose/efeitos dos fármacos , Subpopulações de Linfócitos B/metabolismo , Células da Medula Óssea/metabolismo , Comunicação Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Morte Celular/imunologia , Linhagem Celular , Técnicas de Cocultura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/imunologia , Membranas Mitocondriais/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/imunologia , Células-Tronco/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/imunologia , Células Estromais/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
3.
J Lipid Res ; 51(5): 914-22, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20388923

RESUMO

Ectopic expression of caveolin-1 in HEK293 cells enhances FA sequestration in membranes as measured by a pH-sensitive fluorescent dye (1). We hypothesized that sequestration of FA is due to the enrichment of caveolin in the cytosolic leaflet and its ability to facilitate the formation of lipid rafts to buffer high FA levels. Here we show that ec-topic expression of caveolin-3 also results in enhanced FA sequestration. To further discriminate the effect that caveolins have on transmembrane FA movement and distribution, we labeled the outer membrane leaflet with fluorescein-phosphatidylethanolamine (FPE), whose emission is quenched by the presence of FA anions. Real-time measurements made with FPE and control experiments with positively charged fatty amines support our hypothesis that caveolins promote localization of FA anions through interactions with basic amino acid residues (lysines and arginines) present at the C termini of caveolins-1 and -3.


Assuntos
Caveolinas/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos/toxicidade , Triglicerídeos/biossíntese , Aminas/química , Aminas/metabolismo , Caveolina 1/química , Caveolina 1/metabolismo , Caveolina 3/química , Caveolina 3/metabolismo , Caveolinas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Espaço Extracelular/metabolismo , Fluoresceínas/metabolismo , Regulação da Expressão Gênica , Movimento , Fosfatidiletanolaminas/metabolismo
4.
Pflugers Arch ; 460(4): 791-802, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20571823

RESUMO

The role of protein kinase C (PKC) in Ca(2+) release through ryanodine receptors (RyRs) in the sarcoplasmic reticulum (SR) of vascular smooth muscle cells (SMCs) is not well understood. Caffeine was used to activate RyRs and the intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured in both freshly isolated and cultured mouse aortic SMCs (ASMCs). Pre-activation of PKC with 1,2-dioctanoyl-sn-glycerol (DOG) prevented caffeine-induced [Ca(2+)](i) transients. Application of the PKC inhibitor calphostin C caused [Ca(2+)](i) transients which were not blocked by nifedipine or by removing extracellular Ca(2+) but were abolished after inhibition of the SR Ca(2+)-ATPase with thapsigargin or after inhibition of RyRs with ryanodine. In addition, chelerythrine and GF109203X also elevated resting [Ca(2+)](i) but no further [Ca(2+)](i) increase was seen with subsequent application of caffeine. Selective inhibition of PKCalpha with safingol blocked caffeine-induced [Ca(2+)](i) transients, but the PKCepsilon inhibitory peptide V1-2 did not. In cells expressing a EGFP-tagged PKCalpha, caffeine-induced [Ca(2+)](i) transients were associated with a rapid focal translocation near the cell periphery, while application of ionomycin and DOG caused translocation to the plasma membrane. Western blot showed that caffeine increased the relative amount of PKCalpha in the particulate fraction in a time-dependent manner. Co-immunoprecipitation of RyRs and PKCalpha indicated that they interact. In conclusion, our studies suggest that PKC activation can inhibit the gating activity of RyRs in the SR of ASMCs, and this regulation is most likely mediated by the Ca(2+)-dependent PKCalpha isoform.


Assuntos
Cálcio/metabolismo , Ativação Enzimática/fisiologia , Músculo Liso Vascular/metabolismo , Proteína Quinase C-alfa/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Western Blotting , Cafeína/farmacologia , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Imunoprecipitação , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Proteína Quinase C-alfa/efeitos dos fármacos , Transporte Proteico , Canal de Liberação de Cálcio do Receptor de Rianodina/efeitos dos fármacos
5.
J Clin Invest ; 117(2): 375-86, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17256056

RESUMO

Obesity and type 2 diabetes are associated with chronic inflammation. Adiponectin is an adipocyte-derived hormone with antidiabetic and antiinflammatory actions. Here, we demonstrate what we believe to be a previously undocumented activity of adiponectin, facilitating the uptake of early apoptotic cells by macrophages, an essential feature of immune system function. Adiponectin-deficient (APN-KO) mice were impaired in their ability to clear apoptotic thymocytes in response to dexamethasone treatment, and these animals displayed a reduced ability to clear early apoptotic cells that were injected into their intraperitoneal cavities. Conversely, adiponectin administration promoted the clearance of apoptotic cells by macrophages in both APN-KO and wild-type mice. Adiponectin overexpression also promoted apoptotic cell clearance and reduced features of autoimmunity in lpr mice whereas adiponectin deficiency in lpr mice led to a further reduction in apoptotic cell clearance, which was accompanied by exacerbated systemic inflammation. Adiponectin was capable of opsonizing apoptotic cells, and phagocytosis of cell corpses was mediated by the binding of adiponectin to calreticulin on the macrophage cell surface. We propose that adiponectin protects the organism from systemic inflammation by promoting the clearance of early apoptotic cells by macrophages through a receptor-dependent pathway involving calreticulin.


Assuntos
Calreticulina/fisiologia , Inflamação/prevenção & controle , Adiponectina/deficiência , Adiponectina/genética , Adiponectina/farmacologia , Adiponectina/fisiologia , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Humanos , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Knockout , Proteínas Recombinantes/farmacologia
6.
Int J Biochem Cell Biol ; 114: 105569, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31299273

RESUMO

Calcium (Ca2+), an important second messenger, regulates many cellular activities and varies spatiotemporally within the cell. Conventional methods to monitor Ca2+ changes, such as synthetic Ca2+ indicators, are not targetable, while genetically encoded Ca2+ indicators (GECI) can be precisely directed to cellular compartments. GECIs are chimeric proteins composed of calmodulin (or other proteins that change conformation on Ca2+ binding) coupled with two fluorescent proteins that come closer together after an increase in [Ca2+], and enhance Förster resonance energy transfer (FRET) that allows for ratiometric [Ca2+] assessment. Here, adult rat ventricular myocytes were transfected with specifically targeted calmodulin-based GECIs and Ca2+ responses to a physiological stimulus, norepinephrine (NE, 10 µM), were observed in a) sarcoplasmic reticulum (SR), b) mitochondria, c) the space between the mitochondria and SR, termed the Mitochondria Associated Membrane space (MAM) and d) cytosol for 10 min after stimulation. In SR and mitochondria, NE increased the [Ca2+] ratio by 17% and by 8%, respectively. In the MAM the [Ca2+] ratio decreased by 16%, while in cytosol [Ca2+] remained unchanged. In conclusion, adrenergic stimulation causes distinct responses in the cardiomyocyte SR, mitochondria and MAM. Additionally, our work provides a toolkit-update for targeted [Ca2+] measurements in multiple cellular compartments.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos/metabolismo , Animais , Masculino , Miócitos Cardíacos/citologia , Ratos , Ratos Sprague-Dawley
7.
Opt Express ; 15(17): 10991-8, 2007 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-19547456

RESUMO

We introduce a multiphoton microscope for high-speed three-dimensional (3D) fluorescence imaging. The system combines parallel illumination by a multifocal multiphoton microscope (MMM) with parallel detection via a segmented high-sensitivity charge-couple device (CCD) camera. The instrument consists of a Ti-sapphire laser illuminating a microlens array that projects 36 foci onto the focal plane. The foci are scanned using a resonance scanner and imaged with a custom-made CCD camera. The MMM increases the imaging speed by parallelizing the illumination; the CCD camera can operate at a frame rate of 1428 Hz while maintaining a low read noise of 11 electrons per pixel by dividing its chip into 16 independent segments for parallelized readout. We image fluorescent specimens at a frame rate of 640 Hz. The calcium wave of fluo3 labeled cardiac myocytes is measured by imaging the spontaneous contraction of the cells in a 0.625 second sequence movie, consisting of 400 single images.

8.
Circ Res ; 90(10): 1114-21, 2002 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-12039802

RESUMO

Antioxidants improve endothelial function in hypercholesterolemia (HC); however, whether this includes improvement of the vascular smooth muscle response to NO is unknown. NO relaxes arteries, in part, by stimulating Ca(2+) uptake via sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) in aortic smooth muscle, and HC impairs SERCA function and the response to NO. HC induces oxidative stress, which could impair SERCA function. To study the effect of antioxidants, which are known to improve endothelium-dependent relaxation in HC, smooth muscle SERCA activity and NO-induced relaxation were studied in rabbits fed normal chow or a 0.5% cholesterol diet for 13 weeks. The antioxidant t-butylhydroxytoluene (BHT, 1%) was mixed with the HC diet in the last 3 weeks. HC impaired acetylcholine- and NO-induced relaxation, and these were restored by BHT. After inhibiting SERCA with thapsigargin, no difference existed in NO-induced relaxation among the three groups. Reduced aortic SERCA activity in HC was restored by BHT without changing SERCA protein expression. 3-Nitrotyrosine was notably increased in the media of the HC aorta, where it colocalized with SERCA. Tyrosine-nitrated SERCA protein was immunoprecipitated in the aortas of HC rabbits, where it was decreased by BHT, and it was also detected in the aortas of atherosclerotic humans. Thus, the antioxidant reverses impaired smooth muscle SERCA function in HC, and this is correlated with the improved relaxation to NO. These beneficial effects may depend on reducing the direct effects on SERCA of reactive oxygen species that are augmented in HC.


Assuntos
Antioxidantes/farmacologia , Hidroxitolueno Butilado/farmacologia , ATPases Transportadoras de Cálcio/fisiologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/fisiopatologia , Músculo Liso Vascular/enzimologia , Tirosina/análogos & derivados , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/fisiopatologia , Cálcio/metabolismo , Técnicas de Cultura , Relação Dose-Resposta a Droga , Humanos , Hipercolesterolemia/enzimologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/farmacologia , Estresse Oxidativo , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Tirosina/metabolismo , Vasodilatação , Vasodilatadores/farmacologia
9.
Nat Commun ; 7: 10332, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26755131

RESUMO

The etiology of idiopathic Parkinson's disease (idPD) remains enigmatic despite recent successes in identification of genes (PARKs) that underlie familial PD. To find new keys to this incurable neurodegenerative disorder we focused on the poorly understood PARK14 disease locus (Pla2g6 gene) and the store-operated Ca(2+) signalling pathway. Analysis of the cells from idPD patients reveals a significant deficiency in store-operated PLA2g6-dependent Ca(2+) signalling, which we can mimic in a novel B6.Cg-Pla2g6(ΔEx2-VB) (PLA2g6 ex2(KO)) mouse model. Here we demonstrate that genetic or molecular impairment of PLA2g6-dependent Ca(2+) signalling is a trigger for autophagic dysfunction, progressive loss of dopaminergic (DA) neurons in substantia nigra pars compacta and age-dependent L-DOPA-sensitive motor dysfunction. Discovery of this previously unknown sequence of pathological events, its association with idPD and our ability to mimic this pathology in a novel genetic mouse model opens new opportunities for finding a cure for this devastating neurodegenerative disease.


Assuntos
Encéfalo/metabolismo , Sinalização do Cálcio/genética , Neurônios Dopaminérgicos/metabolismo , Fosfolipases A2 do Grupo VI/genética , Movimento , Doença de Parkinson/genética , Idoso , Animais , Western Blotting , Encéfalo/patologia , Neurônios Dopaminérgicos/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Fosfolipases A2 do Grupo VI/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas , Camundongos , Camundongos Transgênicos , Microscopia Confocal , Microscopia de Fluorescência , Pessoa de Meia-Idade , Destreza Motora , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Adulto Jovem
10.
Immunol Lett ; 122(2): 170-84, 2009 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-19187784

RESUMO

The interaction between CD40 and its ligand (CD40L) has been implicated in the pathogenesis of atherosclerosis and is recognized as a central event in the development of immuno-inflammatory processes. Our previous studies have shown that the CD40-CD40L interaction modulates platelet, neutrophil, and endothelial reactive oxygen species (ROS) generation. Hypoxia, known to be associated with tissue ischemia and inflammation, also influences the ROS production and changes the cellular redox state. However, the effect of hypoxia on CD40-CD40L mediated vascular inflammation is unknown. We have investigated whether hypoxia influences CD40-CD40L mediated vascular inflammatory responses, ROS production, and cellular interactions. We found that hypoxia significantly enhances the inflammatory effect of CD40L in both endothelial and monocytic cells (THP1). CD40-CD40L interaction in the presence of hypoxia induces ROS production, the synthesis of an inflammatory adhesive protein intercellular adhesion molecule 1 (ICAM1) and activates stress response proteins (p38 MAP kinase and HSP27), indicating that CD40L mediates the induction of oxidative stress in these cells. Importantly, we found that the effects of CD40L can be transmitted between HUVECs and monocytic THP1 cells through intercellular CD40-CD40L interaction and these processes are augmented under hypoxia. Together, these data indicate that under hypoxic conditions the CD40-CD40L interaction significantly influences adhesion molecule expression, stress generation, actin polymerization, and monocytic adhesion to endothelial cells in addition to changes in signaling. In summary, we show that hypoxia can alter CD40-CD40L mediated endothelial-monocyte interaction, playing a significant role in vascular inflammation and cellular adhesion processes.


Assuntos
Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Células Endoteliais/metabolismo , Hipóxia/imunologia , Monócitos/metabolismo , Actinas/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/fisiopatologia , Adesão Celular/imunologia , Linhagem Celular , Células Endoteliais/imunologia , Células Endoteliais/patologia , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Molécula 1 de Adesão Intercelular/metabolismo , Chaperonas Moleculares , Monócitos/imunologia , Monócitos/patologia , Estresse Oxidativo , Transdução de Sinais/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Cell Biol ; 181(7): 1129-39, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18573911

RESUMO

Reactive oxygen species (ROS) function as intracellular signaling molecules in a diverse range of biological processes. However, it is unclear how freely diffusible ROS dictate specific cellular responses. In this study, we demonstrate that nicotinamide adenine dinucleotide phosphate reduced oxidase 4 (Nox4), a major Nox isoform expressed in nonphagocytic cells, including vascular endothelium, is localized to the endoplasmic reticulum (ER). ER localization of Nox4 is critical for the regulation of protein tyrosine phosphatase (PTP) 1B, also an ER resident, through redox-mediated signaling. Nox4-mediated oxidation and inactivation of PTP1B in the ER serves as a regulatory switch for epidermal growth factor (EGF) receptor trafficking and specifically acts to terminate EGF signaling. Consistent with this notion, PTP1B oxidation could also be modulated by ER targeting of antioxidant enzymes but not their untargeted counterparts. These data indicate that the specificity of intracellular ROS-mediated signal transduction may be modulated by the localization of Nox isoforms within specific subcellular compartments.


Assuntos
NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Animais , Antioxidantes/farmacologia , Células COS , Proliferação de Células/efeitos dos fármacos , Chlorocebus aethiops , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/enzimologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Camundongos , Mutação/genética , NADPH Oxidase 4 , Oxirredução/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos
12.
Am J Physiol Gastrointest Liver Physiol ; 288(6): G1170-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15662047

RESUMO

We previously reported that induction of acute experimental esophagitis by repeated perfusion of HCl may affect release of intracellular Ca(2+) stores. We therefore measured cytosolic Ca(2+) in response to a maximally effective dose of ACh in fura 2-AM-loaded lower esophageal sphincter (LES) circular muscle cells and examined the contribution of H(2)O(2) to the reduction in Ca(2+) signal. In normal cells, the ACh-induced Ca(2+) increase was the same in normal-Ca(2+) and Ca(2+)-free medium and was abolished by the phosphatidylinositol 4,5-bisphosphate-specific phospholipase C inhibitor U-73122, confirming that the initial ACh-induced contraction depends on Ca(2+) release from intracellular stores through production of inositol trisphosphate. In LES cells, the ACh-induced Ca(2+) increase in normal-Ca(2+) medium was significantly lower in esophagitis than in normal cells and was further reduced ( approximately 70%) when the cells were incubated in Ca(2+)-free medium. This reduction was partially reversed by the H(2)O(2) scavenger catalase. H(2)O(2) measurements in LES circular muscle showed significantly higher levels in esophagitis than in normal cells. When normal LES cells were incubated with H(2)O(2), the ACh-induced Ca(2+) increase was significantly reduced in normal-Ca(2+) and Ca(2+)-free medium and was similar to that observed in animals with esophagitis. The initial ACh-induced contraction was also reduced in normal cells incubated with H(2)O(2). H(2)O(2), when applied to cells at sufficiently high concentration, produced a visible and prolonged Ca(2+) signal in normal cells. H(2)O(2)-induced cell contraction was also sensitive to depletion of stores by thapsigargin (TG); conversely, H(2)O(2) reduced TG-induced contraction, suggesting that TG and H(2)O(2) may operate through similar mechanisms. Ca(2+)-ATPase activity measurement indicates that H(2)O(2) and TG reduced Ca(2+)-ATPase activity, confirming similarity of mechanism of action. We conclude that H(2)O(2) may be at least partly responsible for impairment of Ca(2+) release in acute experimental esophagitis by inhibiting Ca(2+) uptake and refilling Ca(2+) stores.


Assuntos
Acetilcolina/farmacologia , Cálcio/farmacocinética , Esofagite/fisiopatologia , Esôfago/patologia , Esôfago/fisiologia , Peróxido de Hidrogênio/farmacologia , Oxidantes/farmacologia , Animais , Gatos , Técnicas de Cultura de Células , Citosol/química , Modelos Animais de Doenças , Esofagite/veterinária , Feminino , Masculino , Contração Muscular , Músculo Liso/fisiologia , Transdução de Sinais
13.
Am J Physiol Gastrointest Liver Physiol ; 286(5): G833-43, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-14670823

RESUMO

Ulcerative colitis (UC) affects colonic motor function, but the mechanism responsible for this motor dysfunction is not well understood. We have shown that neurokinin A (NKA) may be an endogenous neurotransmitter mediating contraction of human sigmoid colonic circular muscle (HSCCM). To elucidate factors responsible for UC motor dysfunction, we examined the role of hydrogen peroxide (H(2)O(2)) in the decrease of NKA-induced response of HSCCM. As previously demonstrated, NKA-induced contraction or Ca(2+) increase of normal muscle cells is mediated by release of Ca(2+) from intracellular stores, because it was not affected by incubation in Ca(2+)-free medium (CFM) containing 200 microM BAPTA. In UC, however, CFM reduced both cell contraction and NKA-induced Ca(2+) increase, suggesting reduced Ca(2+) release from intracellular stores. In normal Ca(2+) medium, NKA and KCl caused normal Ca(2+) signal in UC cells but reduced cell shortening. The decreased Ca(2+) signal and contraction in response to NKA or thapsigargin were partly recovered in the presence of H(2)O(2) scavenger catalase, suggesting involvement of H(2)O(2) in UC-induced dysmotility. H(2)O(2) levels were higher in UC than in normal HSCCM, and enzymatically isolated UC muscle cells contained much higher levels of H(2)O(2) than normal cells, which were significantly reduced by catalase. H(2)O(2) treatment of normal cells in CFM reproduced the reduction of NKA-induced Ca(2+) release observed in UC cells. In addition, H(2)O(2) caused a measurable, direct release of Ca(2+) from intracellular stores. We conclude that H(2)O(2) may contribute to reduction of NKA-induced Ca(2+) release from intracellular Ca(2+) stores in UC and contribute to the observed colonic motor dysfunction.


Assuntos
Colite Ulcerativa/fisiopatologia , Motilidade Gastrointestinal/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Catalase/farmacologia , Colo Sigmoide/efeitos dos fármacos , Colo Sigmoide/metabolismo , Colo Sigmoide/fisiopatologia , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Técnicas In Vitro , Neurocinina A/farmacologia , Cloreto de Potássio/farmacologia
14.
Am J Physiol Heart Circ Physiol ; 285(4): H1396-403, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12791589

RESUMO

Hypertension caused by angiotensin II is characterized by an increase in tissue oxidant stress as evidenced by increased quantities of reactive oxygen and nitrogen species. Manganese superoxide dismutase (MnSOD) is a key mitochondrial antioxidant enzyme that is inactivated in conditions of oxidant stress by reacting with peroxynitrite to form 3-nitrotyrosine in its active site. The increase in 3-nitrotyrosine content in MnSOD in the kidney of angiotensin II-infused rats was assessed in this study by immunohistochemistry, Western blotting, immunoprecipitation, and HPLC with UV detection (HPLC-UV). MnSOD activity decreased approximately 50% in angiotensin II-infused rat kidneys (24 +/- 4.6 vs. 11 +/- 5.2 U/mg) without a change in protein expression. Immunohistochemical staining showed 3-nitrotyrosine predominantly in distal tubules and collecting duct cells in the angiotensin II-infused rat kidneys. By two-photon microscopy, 3-nitrotyrosine colocalized with MnSOD. Total 3-nitrotyrosine content in kidney homogenates was increased in angiotensin II-infused rat kidney [3.2 +/- 1.9 (sham treated) vs. 9.5 +/- 2.3 ng/mg protein by HPLC-UV detection]. With tracer amounts of tyrosine-nitrated recombinant MnSOD, the most sensitive technique to detect tyrosine nitration of MnSOD was immunoprecipitation from tissue with anti-MnSOD antibody, followed by detection of 3-nitrotyrosine by Western blotting or HPLC. By HPLC, 3-nitrotyrosine content of kidney MnSOD increased 13-fold after angiotensin II infusion, representing an increase from approximately one-twentieth to one-fifth of the total 3-nitrotyrosine content in sham-treated and angiotensin II-infused rat kidney, respectively. Angiotensin II-induced hypertension is accompanied by increased tyrosine nitration of MnSOD, which, because it inactivates the enzyme, may contribute to increased oxidant stress in the kidney.


Assuntos
Angiotensina II/farmacologia , Rim/metabolismo , Superóxido Dismutase/metabolismo , Tirosina/análogos & derivados , Tirosina/metabolismo , Animais , Anticorpos Monoclonais , Cromatografia Líquida de Alta Pressão , Imuno-Histoquímica , Rim/efeitos dos fármacos , Masculino , Testes de Precipitina , Ratos , Ratos Wistar , Proteínas Recombinantes/metabolismo , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa