Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466116

RESUMO

Sound frequency and duration are essential auditory components. The brain perceives deviations from the preceding sound context as prediction errors, allowing efficient reactions to the environment. Additionally, prediction error response to duration change is reduced in the initial stages of psychotic disorders. To compare the spatiotemporal profiles of responses to prediction errors, we conducted a human electrocorticography study with special attention to high gamma power in 13 participants who completed both frequency and duration oddball tasks. Remarkable activation in the bilateral superior temporal gyri in both the frequency and duration oddball tasks were observed, suggesting their association with prediction errors. However, the response to deviant stimuli in duration oddball task exhibited a second peak, which resulted in a bimodal response. Furthermore, deviant stimuli in frequency oddball task elicited a significant response in the inferior frontal gyrus that was not observed in duration oddball task. These spatiotemporal differences within the Parasylvian cortical network could account for our efficient reactions to changes in sound properties. The findings of this study may contribute to unveiling auditory processing and elucidating the pathophysiology of psychiatric disorders.


Assuntos
Encéfalo , Eletrocorticografia , Humanos , Córtex Pré-Frontal , Som , Percepção Auditiva
2.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38183184

RESUMO

Auditory sensory processing is assumed to occur in a hierarchical structure including the primary auditory cortex (A1), superior temporal gyrus, and frontal areas. These areas are postulated to generate predictions for incoming stimuli, creating an internal model of the surrounding environment. Previous studies on mismatch negativity have indicated the involvement of the superior temporal gyrus in this processing, whereas reports have been mixed regarding the contribution of the frontal cortex. We designed a novel auditory paradigm, the "cascade roving" paradigm, which incorporated complex structures (cascade sequences) into a roving paradigm. We analyzed electrocorticography data from six patients with refractory epilepsy who passively listened to this novel auditory paradigm and detected responses to deviants mainly in the superior temporal gyrus and inferior frontal gyrus. Notably, the inferior frontal gyrus exhibited broader distribution and sustained duration of deviant-elicited responses, seemingly differing in spatio-temporal characteristics from the prediction error responses observed in the superior temporal gyrus, compared with conventional oddball paradigms performed on the same participants. Moreover, we observed that the deviant responses were enhanced through stimulus repetition in the high-gamma range mainly in the superior temporal gyrus. These features of the novel paradigm may aid in our understanding of auditory predictive coding.


Assuntos
Córtex Auditivo , Eletrocorticografia , Humanos , Eletroencefalografia , Potenciais Evocados Auditivos/fisiologia , Córtex Auditivo/fisiologia , Lobo Temporal/fisiologia , Estimulação Acústica , Percepção Auditiva/fisiologia
3.
Cereb Cortex ; 33(22): 11070-11079, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37815245

RESUMO

Adolescence is a critical period for psychological difficulties. Auditory mismatch negativity (MMN) and gamma-band auditory steady-state response (ASSR) are representative electrophysiological indices that mature during adolescence. However, the longitudinal association between MMN/ASSR and psychological difficulties among adolescents remains unclear. We measured MMN amplitude for duration and frequency changes and ASSR twice in a subsample (n = 67, mean age 13.4 and 16.1 years, respectively) from a large-scale population-based cohort. No significant longitudinal changes were observed in any of the electroencephalography indices. Changes in SDQ-TD were significantly associated with changes in duration MMN, but not frequency MMN and ASSR. Furthermore, the subgroup with higher SDQ-TD at follow-up showed a significant duration MMN decrease over time, whereas the subgroup with lower SDQ-TD did not. The results of our population neuroscience study suggest that insufficient changes in electroencephalography indices may have been because of the short follow-up period or non-monotonic change during adolescence, and indicated that the longitudinal association with psychological difficulties was specific to the duration MMN. These findings provide new insights that electrophysiological change may underlie the development of psychosocial difficulties emerging in adolescence.


Assuntos
Eletroencefalografia , Potenciais Evocados Auditivos , Humanos , Adolescente , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica/métodos , Percepção Auditiva/fisiologia
4.
Br J Clin Pharmacol ; 89(6): 1809-1819, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36562925

RESUMO

AIMS: TMS-007, an SMTP family member, modulates plasminogen conformation and enhances plasminogen-fibrin binding, leading to promotion of endogenous fibrinolysis. Its anti-inflammatory action, mediated by soluble epoxide hydrolase inhibition, may contribute to its efficacy. Evidence suggests that TMS-007 can effectively treat experimental thrombotic and embolic strokes with a wide time window, while reducing haemorrhagic transformation. We aim to evaluate the safety, pharmacokinetics and pharmacodynamics of TMS-007 in healthy volunteers. METHODS: This was a randomized, placebo-controlled, double blind, dose-escalation study, administered as a single intravenous infusion of TMS-007 in cohorts of healthy male Japanese subjects. Six cohorts were planned, but only five were completed. In each cohort (n = 8), individuals were randomized to receive one of five doses of TMS-007 (3, 15, 60, 180 or 360 mg; n = 6) or placebo (n = 2). RESULTS: TMS-007 was generally well tolerated, and no serious adverse events were attributed to the drug. A linear dose-dependency was observed for plasma TMS-007 levels. No symptoms of bleeding were observed on brain MRI analysis, and no bleeding-related responses were found on laboratory testing. The plasma levels of the coagulation factor fibrinogen and the anti-fibrinolysis factor α2 -antiplasmin levels were unchanged after TMS-007 dosing. A slight increase in the plasma level of plasmin-α2 -antiplasmin complex, an index of plasmin formation, was observed in the TMS-007 group in cohort 2. CONCLUSIONS: TMS-007 is generally well tolerated and exhibits favourable pharmacokinetic profiles that warrant further clinical development.


Assuntos
Antifibrinolíticos , Fibrinolisina , Humanos , Masculino , Fenol , Fenóis/farmacologia , Plasminogênio , Hemorragia/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Método Duplo-Cego , Relação Dose-Resposta a Droga
5.
Cereb Cortex ; 31(10): 4518-4532, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33907804

RESUMO

Gamma oscillations are physiological phenomena that reflect perception and cognition, and involve parvalbumin-positive γ-aminobutyric acid-ergic interneuron function. The auditory steady-state response (ASSR) is the most robust index for gamma oscillations, and it is impaired in patients with neuropsychiatric disorders such as schizophrenia and autism. Although ASSR reduction is known to vary in terms of frequency and time, the neural mechanisms are poorly understood. We obtained high-density electrocorticography recordings from a wide area of the cortex in 8 patients with refractory epilepsy. In an ASSR paradigm, click sounds were presented at frequencies of 20, 30, 40, 60, 80, 120, and 160 Hz. We performed time-frequency analyses and analyzed intertrial coherence, event-related spectral perturbation, and high-gamma oscillations. We demonstrate that the ASSR is globally distributed among the temporal, parietal, and frontal cortices. The ASSR was composed of time-dependent neural subcircuits differing in frequency tuning. Importantly, the frequency tuning characteristics of the late-latency ASSR varied between the temporal/frontal and parietal cortex, suggestive of differentiation along parallel auditory pathways. This large-scale survey of the cortical ASSR could serve as a foundation for future studies of the ASSR in patients with neuropsychiatric disorders.


Assuntos
Córtex Cerebral/fisiopatologia , Eletrocorticografia/métodos , Ritmo Gama/fisiologia , Estimulação Acústica , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia/instrumentação , Potenciais Evocados/fisiologia , Potenciais Evocados Auditivos , Feminino , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiopatologia , Adulto Jovem
6.
Psychiatry Clin Neurosci ; 76(11): 552-559, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35352436

RESUMO

AIM: Subjective quality of life is a clinically relevant outcome that is strongly associated with the severity of clinical symptoms in individuals with ultra-high risk for psychosis and patients with recent-onset psychotic disorder. Our objective was to examine whether longitudinal changes in clinical symptoms are associated with quality of life in ultra-high risk individuals and patients with recent-onset psychotic disorder. METHODS: Individuals with ultra-high risk and patients with recent-onset psychosis disorder were recruited in the same clinical settings at baseline and were followed up with more than 6 months and less than 5 years later. We assessed five factors of clinical symptoms using the positive and negative syndrome scale, and quality of life using the World Health Organization quality of life questionnaire-short form. We used multiple regression to examine the relationships between clinical symptoms and quality of life while controlling for diagnosis, follow-up period, age, and sex. RESULTS: Data were collected from 22 individuals with ultra-high risk and 27 patients with recent-onset psychosis disorder. The multiple regression analysis results indicated that the more severe anxiety/depression was at baseline, the poorer the quality of life at follow-up. Further, improvement of anxiety/depression and disorganized thoughts were associated with improvement in quality of life. The difference in diagnosis did not affect the association between clinical symptoms and quality of life. CONCLUSION: These findings suggest that the improvement of anxiety/depression and disorganized thoughts is important in the early stages of psychosis before it becomes severe, affecting the quality of life.


Assuntos
Transtorno Depressivo , Transtornos Psicóticos , Humanos , Qualidade de Vida , Transtornos Psicóticos/diagnóstico , Depressão , Transtornos de Ansiedade
7.
Hum Brain Mapp ; 40(4): 1184-1194, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353997

RESUMO

Auditory contextual processing has been assumed to be based on a hierarchical structure consisting of the primary auditory cortex, superior temporal gyrus (STG), and frontal lobe. Recent invasive studies on mismatch negativity (MMN) have revealed functional segregation for auditory contextual processing such as neural adaptation in the primary auditory cortex and prediction in the frontal lobe. However, the role of the STG remains unclear. We obtained induced activity in the high gamma band as mismatch response (MMR), an electrocorticographic (ECoG) counterpart to scalp MMN, and the components of MMR by analyzing ECoG data from patients with refractory epilepsy in an auditory oddball task paradigm. We found that MMR localized mainly in the bilateral posterior STGs, and that deviance detection largely accounted for MMR. Furthermore, adaptation was identified in a limited number of electrodes on the superior temporal plane. Our findings reveal a mixed contribution of deviance detection and adaptation depending on location in the STG. Such spatial considerations could lead to further understanding of the pathophysiology of relevant psychiatric disorders.


Assuntos
Percepção Auditiva/fisiologia , Lobo Temporal/fisiologia , Adulto , Córtex Auditivo/fisiologia , Mapeamento Encefálico/métodos , Eletrocorticografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
8.
Psychiatry Clin Neurosci ; 73(5): 231-242, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30588712

RESUMO

AIM: Adolescence is a crucial stage of psychological development and is critically vulnerable to the onset of psychopathology. Our understanding of how the maturation of endocrine, epigenetics, and brain circuit may underlie psychological development in adolescence, however, has not been integrated. Here, we introduce our research project, the population-neuroscience study of the Tokyo TEEN Cohort (pn-TTC), a longitudinal study to explore the neurobiological substrates of development during adolescence. METHODS: Participants in the first wave of the pn-TTC (pn-TTC-1) study were recruited from those of the TTC study, a large-scale epidemiological survey in which 3171 parent-adolescent pairs were recruited from the general population. Participants underwent psychological, cognitive, sociological, and physical assessment. Moreover, adolescents and their parents underwent magnetic resonance imaging (MRI; structural MRI, resting-state functional MRI, and magnetic resonance spectroscopy), and adolescents provided saliva samples for hormone analysis and for DNA analysis including epigenetics. Furthermore, the second wave (pn-TTC-2) followed similar methods as in the first wave. RESULTS: A total of 301 parent-adolescent pairs participated in the pn-TTC-1 study. Moreover, 281 adolescents participated in the pn-TTC-2 study, 238 of whom were recruited from the pn-TTC-1 sample. The instruction for data request is available at: http://value.umin.jp/data-resource.html. CONCLUSION: The pn-TTC project is a large-scale and population-neuroscience-based survey with a plan of longitudinal biennial follow up. Through this approach we seek to elucidate adolescent developmental mechanisms according to biopsychosocial models. This current biomarker research project, using minimally biased samples recruited from the general population, has the potential to expand the new research field of population neuroscience.


Assuntos
Comportamento do Adolescente/fisiologia , Desenvolvimento do Adolescente/fisiologia , Sintomas Comportamentais/fisiopatologia , Encéfalo/diagnóstico por imagem , Eletroencefalografia , Epigênese Genética/genética , Imageamento por Ressonância Magnética , Testes Neuropsicológicos , Adolescente , Comportamento do Adolescente/psicologia , Sintomas Comportamentais/epidemiologia , Feminino , Humanos , Estudos Longitudinais , Masculino , Pais , Saliva , Tóquio/epidemiologia
9.
Cereb Cortex ; 26(3): 1027-1035, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25452567

RESUMO

Alterations in gamma-band auditory steady-state response (ASSR) are the most robust finding of abnormal neural oscillations in patients with first-episode (FES) and chronic schizophrenia. Gamma-band ASSRs may indicate GABAergic interneuron dysfunction. Nevertheless, it is unknown whether abnormal gamma-band ASSRs are present before the onset of psychosis. Subjects were 15 ultra-high-risk (UHR) individuals, 13 FES patients, and 21 healthy control (HC) subjects. We performed electroencephalogram recordings and measured ASSRs in each group as they were presented with click trains at 20, 30, and 40 Hz. We then conducted time-frequency analyses and calculated intertrial phase coherence and event-related spectral perturbation. The time course of gamma-band ASSRs showed significantly different features among groups. Compared with the HC group, the UHR group was characterized by intact early-latency (0-100 ms) and reduced late-latency (300-500 ms) ASSRs. In contrast, both early- and late-latency ASSRs were significantly reduced in the FES group. Gamma-band ASSRs were correlated with clinical symptoms and attentional functioning in FES (|rs| > 0.70). These results suggest differential alterations of gamma-band ASSRs between UHR and FES groups. The late-latency ASSR alteration may represent a biomarker for early detection of psychosis, while the early-latency ASSR abnormality may develop through the onset of psychosis.


Assuntos
Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Ritmo Gama/fisiologia , Transtornos Psicóticos/fisiopatologia , Esquizofrenia/fisiopatologia , Estimulação Acústica , Doença Aguda , Antipsicóticos/uso terapêutico , Atenção , Eletroencefalografia , Feminino , Humanos , Entrevista Psicológica , Masculino , Sintomas Prodrômicos , Escalas de Graduação Psiquiátrica , Transtornos Psicóticos/diagnóstico , Transtornos Psicóticos/tratamento farmacológico , Risco , Esquizofrenia/diagnóstico , Esquizofrenia/tratamento farmacológico , Adulto Jovem
10.
Psychiatry Clin Neurosci ; 70(7): 278-85, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26991316

RESUMO

AIM: Go/No-go derived event-related potential (ERP) signals have been widely used in schizophrenia research to monitor self-control deficits in this disorder. However, no study to date has associated Go/No-go-related ERP with global functioning. METHODS: Participants consisted of 21 patients with schizophrenia and 22 healthy controls. We used a visual Go/No-go paradigm to measure Go/No-go-related N2/P3 ERP components by means of a 64-electrode cap for electroencephalogram recording. We used the Global Assessment of Functioning to evaluate global functioning and analyzed the correlation between ERP indices and global functioning scores. RESULTS: N2 amplitudes were reduced in patients with schizophrenia, but not influenced by either of the Go/No-go conditions. P3 amplitudes were influenced by the Go/No-go conditions, but not reduced in patients with schizophrenia. Global functioning was correlated with the No-go P3 amplitudes, but not N2 amplitudes, in patients with schizophrenia. CONCLUSION: These results indicate that global functioning is associated with intact neural activity rather than impaired neural activity during Go/No-go response inhibition tasks in patients with schizophrenia.


Assuntos
Potenciais Evocados/fisiologia , Função Executiva/fisiologia , Inibição Psicológica , Esquizofrenia/fisiopatologia , Adulto , Eletroencefalografia , Potenciais Evocados P300/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
11.
Neuropsychopharmacol Rep ; 44(1): 240-245, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38013609

RESUMO

Gamma oscillations, thought to arise from the activity of ɣ-aminobutyric acid (GABA)ergic interneurons, have potential as a biomarker for schizophrenia. Gamma-band auditory steady-state responses (ASSRs) are notably reduced in both chronic and early-stage schizophrenia patients. Furthermore, alterations in gamma-band ASSRs have been demonstrated in animal models through translational research. However, the 40-Hz harmonic responses of the 20-Hz ASSR are not as well-characterized, despite the possibility that these harmonic oscillatory responses may reflect resonant activity in neural circuits. In this study, we investigated the 40-Hz harmonic response to the 20-Hz ASSR in the early stages of schizophrenia. The study recruited 49 participants, including 15 individuals at ultra-high-risk (UHR) for psychosis, 13 patients with first-episode schizophrenia (FES), and 21 healthy controls (HCs). The 40-Hz harmonic responses of the 20-Hz ASSR were evident in all groups. Interestingly, while previous report observed reduced 40-Hz ASSRs, the 40-Hz harmonic responses of the 20-Hz ASSR were not reduced in the UHR or FES groups. These findings suggest that the gamma-band ASSR and its harmonic responses may represent distinct aspects of pathophysiology in the early stages of schizophrenia.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Eletroencefalografia
12.
Schizophrenia (Heidelb) ; 10(1): 32, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472253

RESUMO

The gamma-band auditory steady-state response (ASSR), primarily generated from the auditory cortex, has received substantial attention as a potential brain marker indicating the pathophysiology of schizophrenia. Previous studies have shown reduced gamma-band ASSR in patients with schizophrenia and demonstrated correlations with impaired neurocognition and psychosocial functioning. Recent studies in clinical and healthy populations have suggested that the neural substrates of reduced gamma-band ASSR may be distributed throughout the cortices surrounding the auditory cortex, especially in the right hemisphere. This study aimed to investigate associations between the gamma-band ASSR and white matter alterations in the bundles broadly connecting the right frontal, parietal and occipital cortices to clarify the networks underlying reduced gamma-band ASSR in patients with schizophrenia. We measured the 40 Hz ASSR using electroencephalography and diffusion tensor imaging in 42 patients with schizophrenia and 22 healthy comparison subjects. The results showed that the gamma-band ASSR was positively correlated with fractional anisotropy (an index of white matter integrity) in the regions connecting the right frontal, parietal and occipital cortices in healthy subjects (ß = 0.41, corrected p = 0.075, uncorrected p = 0.038) but not in patients with schizophrenia (ß = 0.17, corrected p = 0.46, uncorrected p = 0.23). These findings support our hypothesis that the generation of gamma-band ASSR is supported by white matter bundles that broadly connect the cortices and that these relationships may be disrupted in schizophrenia. Our study may help characterize and interpret reduced gamma-band ASSR as a useful brain marker of schizophrenia.

13.
Neuroimage ; 66: 594-603, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23085112

RESUMO

OBJECTIVE: Schizophrenia (SZ) patients have information processing deficits, spanning from low level sensory processing to higher-order cognitive functions. Mismatch negativity (MMN) and P3a are event-related potential (ERP) components that are automatically elicited in response to unattended changes in ongoing, repetitive stimuli that provide a window into abnormal information processing in SZ. MMN and P3a are among the most robust and consistently identified deficits in SZ, yet the neural substrates of these responses and their associated deficits in SZ are not fully understood. This study examined the neural sources of MMN and P3a components in a large cohort of SZ and nonpsychiatric control subjects (NCS) using Exact Low Resolution Electromagnetic Tomography Analyses (eLORETA) in order to identify the neural sources of MMN and P3a as well as the brain regions associated with deficits commonly observed among SZ patients. METHODS: 410 SZ and 247 NCS underwent EEG testing using a duration-deviant auditory oddball paradigm (1-kHz tones, 500ms SOA; standard p=0.90, 50-ms duration; deviant tones P=0.10, 100-ms duration) while passively watching a silent video. Voxel-by-voxel within- (MMN vs. P3a) and between-group (SZ vs. NCS) comparisons were performed using eLORETA. RESULTS: SZ had robust deficits in MMN and P3a responses measured at scalp electrodes consistent with other studies. These components mapped onto neural sources broadly distributed across temporal, frontal, and parietal regions. MMN deficits in SZ were associated with reduced activations in discrete medial frontal brain regions, including the anterior-posterior cingulate and medial frontal gyri. These early sensory discriminatory MMN impairments were followed by P3a deficits associated with widespread reductions in the activation of attentional networks (frontal, temporal, parietal regions), reflecting impaired orienting or shifts of attention to the infrequent stimuli. CONCLUSIONS: MMN and P3a are dissociable responses associated with broadly distributed patterns of neural activation. MMN deficits among SZ patients appear to be primarily accounted for by reductions in medial prefrontal brain regions that are followed by widespread dysfunction across cortical networks associated with P3a in a manner that is consistent with hierarchical information processing models of cognitive deficits in SZ patients. Impairments in automatic stimulus discrimination may contribute to higher-order cognitive and psychosocial deficits in SZ.


Assuntos
Atenção/fisiologia , Encéfalo/fisiopatologia , Potenciais Evocados/fisiologia , Esquizofrenia/fisiopatologia , Adulto , Estudos de Coortes , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador
14.
Transl Psychiatry ; 13(1): 218, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37365182

RESUMO

Several animal models of schizophrenia and patients with chronic schizophrenia have shown increased spontaneous power of gamma oscillations. However, the most robust alterations of gamma oscillations in patients with schizophrenia are reduced auditory-oscillatory responses. We hypothesized that patients with early-stage schizophrenia would have increased spontaneous power of gamma oscillations and reduced auditory-oscillatory responses. This study included 77 participants, including 27 ultra-high-risk (UHR) individuals, 19 patients with recent-onset schizophrenia (ROS), and 31 healthy controls (HCs). The auditory steady-state response (ASSR) and spontaneous power of gamma oscillations measured as induced power during the ASSR period were calculated using electroencephalography during 40-Hz auditory click-trains. The ASSRs were lower in the UHR and ROS groups than in the HC group, whereas the spontaneous power of gamma oscillations in the UHR and ROS groups did not significantly differ from power in the HC group. Both early-latency (0-100 ms) and late-latency (300-400 ms) ASSRs were significantly reduced and negatively correlated with the spontaneous power of gamma oscillations in the ROS group. In contrast, UHR individuals exhibited reduced late-latency ASSR and a correlation between the unchanged early-latency ASSR and the spontaneous power of gamma oscillations. ASSR was positively correlated with the hallucinatory behavior score in the ROS group. Correlation patterns between the ASSR and spontaneous power of gamma oscillations differed between the UHR and ROS groups, suggesting that the neural dynamics involved in non-stimulus-locked/task modulation change with disease progression and may be disrupted after psychosis onset.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Potenciais Evocados Auditivos/fisiologia , Estimulação Acústica , Espécies Reativas de Oxigênio , Eletroencefalografia
15.
Front Psychiatry ; 13: 557954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558420

RESUMO

Sensory prediction is considered an important element of mismatch negativity (MMN) whose reduction is well known in patients with schizophrenia. Omission MMN is a variant of the MMN which is elicited by the absence of a tone previously sequentially presented. Omission MMN can eliminate the effects of sound differences in typical oddball paradigms and affords the opportunity to identify prediction-related signals in the brain. Auditory predictions are thought to reflect bottom-up and top-down processing within hierarchically organized auditory areas. However, the communications between the various subregions of the auditory cortex and the prefrontal cortex that generate and communicate sensory prediction-related signals remain poorly understood. To explore how the frontal and temporal cortices communicate for the generation and propagation of such signals, we investigated the response in the omission paradigm using electrocorticogram (ECoG) electrodes implanted in the temporal, lateral prefrontal, and orbitofrontal cortices of macaque monkeys. We recorded ECoG data from three monkeys during the omission paradigm and examined the functional connectivity between the temporal and frontal cortices by calculating phase-locking values (PLVs). This revealed that theta- (4-8 Hz), alpha- (8-12 Hz), and low-beta- (12-25 Hz) band synchronization increased at tone onset between the higher auditory cortex and the frontal pole where an early omission response was observed in the event-related potential (ERP). These synchronizations were absent when the tone was omitted. Conversely, low-beta-band (12-25 Hz) oscillation then became stronger for tone omission than for tone presentation approximately 200 ms after tone onset. The results suggest that auditory input is propagated to the frontal pole via the higher auditory cortex and that a reciprocal network may be involved in the generation of auditory prediction and prediction error. As impairments of prediction may underlie MMN reduction in patients with schizophrenia, an aberrant hierarchical temporal-frontal network might be related to this pathological condition.

16.
Front Netw Physiol ; 1: 755685, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-36925577

RESUMO

The excellence of the brain is its robustness under various types of noise and its flexibility under various environments. However, how the brain works is still a mystery. The critical brain hypothesis proposes a possible mechanism and states that criticality plays an important role in the healthy brain. Herein, using an electroencephalography dataset obtained from patients with psychotic disorders (PDs), ultra-high risk (UHR) individuals and healthy controls (HCs), and its dynamical network analysis, we show that the brain of HCs remains around a critical state, whereas that of patients with PD falls into more stable states. Meanwhile, the brain of UHR individuals is similar to that of PD in terms of entropy but is analogous to that of HCs in causality patterns. These results not only provide evidence for the criticality of the normal brain but also highlight the practicability of using an analytic biophysical tool to study the dynamical properties of mental diseases.

17.
NPJ Schizophr ; 7(1): 56, 2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845247

RESUMO

Many studies have tested the relationship between demographic, clinical, and psychobiological measurements and clinical outcomes in ultra-high risk for psychosis (UHR) and first-episode psychosis (FEP). However, no study has investigated the relationship between multi-modal measurements and long-term outcomes for >2 years. Thirty-eight individuals with UHR and 29 patients with FEP were measured using one or more modalities (cognitive battery, electrophysiological response, structural magnetic resonance imaging, and functional near-infrared spectroscopy). We explored the characteristics associated with 13- and 28-month clinical outcomes. In UHR, the cortical surface area in the left orbital part of the inferior frontal gyrus was negatively associated with 13-month disorganized symptoms. In FEP, the cortical surface area in the left insula was positively associated with 28-month global social function. The left inferior frontal gyrus and insula are well-known structural brain characteristics in schizophrenia, and future studies on the pathological mechanism of structural alteration would provide a clearer understanding of the disease.

18.
Front Psychiatry ; 11: 660, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733298

RESUMO

Mismatch negativity (MMN) is a widely used biological marker for schizophrenia research. Previous studies reported that MMN amplitude was reduced in schizophrenia and that reduced MMN amplitude was associated with cognitive impairments and poor functional outcome in schizophrenia. However, the neurobiological mechanisms underlying the reduced MMN amplitude remain unclear. Recent studies suggest that reduced MMN amplitude may reflect altered predictive coding in schizophrenia. In this paper, we reviewed MMN studies that used new paradigms and computational modeling to investigate altered predictive coding in schizophrenia. Studies using the roving oddball paradigm and modified oddball paradigm revealed that the effects of conditional probability were impaired in schizophrenia. Studies using omission paradigms and many-standards paradigms revealed that prediction error, but not adaptation, was impaired in schizophrenia. A study using a local-global paradigm revealed that hierarchical structures were impaired at both local and global levels in schizophrenia. Furthermore, studies using dynamic causal modeling revealed that neural networks with hierarchical structures were impaired in schizophrenia. These findings indicate that altered predictive coding underlies the reduced MMN amplitude in schizophrenia. However, there are several unsolved questions about optimal procedures, association among paradigms, and heterogeneity of schizophrenia. Future studies using several paradigms and computational modeling may solve these questions, and may lead to clarifying the pathophysiology of schizophrenia and to the development of individualized treatments for schizophrenia.

19.
Front Psychiatry ; 11: 874, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005162

RESUMO

Mismatch negativity (MMN) is a negative deflection of the auditory event-related potential (ERP) elicited by an abrupt change in a sound presented repeatedly. In patients with schizophrenia, MMN is consistently reduced, which makes it a promising biomarker. A non-human primate (NHP) model of MMN based on scalp electroencephalogram (EEG) recordings can provide a useful translational tool, given the high structural homology of the prefrontal and auditory cortices between NHPs, such as macaques, and humans. However, in previous MMN studies, the NHP models used did not allow for comparison with humans because of differences in task settings. Moreover, duration-deviant MMN (dMMN), whose reduction is larger than that in the frequency-deviant MMN (fMMN) in patients with schizophrenia, has never been demonstrated in NHP models. In this study, we determined whether dMMN can be observed in macaque scalp EEG recordings. EEGs were recorded from frontal electrodes (Fz) in two Japanese macaques. Consistent with clinical settings, auditory stimuli consisted of two pure tones, a standard and a deviant tone, in an oddball paradigm. The deviant and standard tones differed in duration (50 and 100 ms for the standard and deviant tones, respectively). A robust dMMN with a latency of around 200 ms, comparable to that in humans, was observed in both monkeys. A comparison with fMMN showed that the dMMN latency was the longer of the two. By bridging the gap between basic and clinical research, our results will contribute to the development of innovative therapeutic strategies for schizophrenia.

20.
Schizophr Bull ; 46(4): 937-946, 2020 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-32072183

RESUMO

The auditory mismatch negativity (MMN) is a translatable electroencephalographic biomarker automatically evoked in response to unattended sounds that is robustly associated with cognitive and psychosocial disability in patients with schizophrenia. Although recent animal studies have tried to clarify the neural substrates of the MMN, the nature of schizophrenia-related deficits is unknown. In this study, we applied a novel paradigm developed from translational animal model studies to carefully deconstruct the constituent neurophysiological processes underlying MMN generation. Patients with schizophrenia (N = 25) and healthy comparison subjects (HCS; N = 27) underwent MMN testing using both a conventional auditory oddball paradigm and a "many-standards paradigm" that was specifically developed to deconstruct the subcomponent adaptation and deviance detection processes that are presumed to underlie the MMN. Using a conventional oddball paradigm, patients with schizophrenia exhibited large effect size deficits of both duration and frequency MMN, consistent with many previous studies. Furthermore, patients with schizophrenia showed selective impairments in deviance detection but no impairment in adaptation to repeated tones. These findings support the use of the many-standards paradigm for deconstructing the constituent processes underlying the MMN, with implications for the use of these translational measures to accelerate the development of new treatments that target perceptual and cognitive impairments in schizophrenia and related disorders.


Assuntos
Adaptação Fisiológica/fisiologia , Percepção Auditiva/fisiologia , Potenciais Evocados Auditivos/fisiologia , Transtornos da Percepção/fisiopatologia , Esquizofrenia/fisiopatologia , Adulto , Biomarcadores , Eletroencefalografia , Feminino , Humanos , Masculino , Transtornos da Percepção/etiologia , Esquizofrenia/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa