Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677612

RESUMO

A branch of graph theory that makes use of a molecular graph is called chemical graph theory. Chemical graph theory is used to depict a chemical molecule. A graph is connected if there is an edge between every pair of vertices. A topological index is a numerical value related to the chemical structure that claims to show a relationship between chemical structure and various physicochemical attributes, chemical reactivity, or, you could say, biological activity. In this article, we examined the topological properties of a planar octahedron network of m dimensions and computed the total eccentricity, average eccentricity, Zagreb eccentricity, geometric arithmetic eccentricity, and atom bond connectivity eccentricity indices, which are used to determine the distance between the vertices of a planar octahedron network.

2.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234902

RESUMO

Chemical descriptors are numeric numbers that capture the whole graph structure and comprise a basic chemical structure. As a topological descriptor, it correlates with certain physical aspects in addition to its chemical representation of underlying chemical substances. In the modelling and design of any chemical network, the graph is important. A number of chemical indices have been developed in theoretical chemistry, including the Wiener index, the Randic index, and many others. In this paper, we look at the benzenoid networks and calculate the exact topological indices based on the degrees of the end vertices.

3.
Saudi Pharm J ; 28(9): 1093-1100, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32922140

RESUMO

Quantitative structure-activity relationship (QSAR) represents quantitative correlation of chemical structural features called as molecular descriptors and pharmacological activity as response endpoints. Topological index is a molecular descriptor extensively used to study QSAR of pharmaceuticals to assess their molecular characteristics by numerical computation. Theoretical assessment of drug like molecules helps to expedite the drug design and discovery process by rationalizing the lead identification, lead optimization and understanding their mechanism of actions. Therefore, in this article, we have computed the general inverse sum indeg index, ISI α , ß of Hyaluronic acid-curcumin conjugates by using molecular structure analysis and edge partitioning technique. Many standard topological indices are obtained as a special case of ISI α , ß . We also proposed general inverse sum indeg polynomial ISI α , ß ( G n , x ) of Hyaluronic acid-curcumin conjugates from which many well-known polynomials are deduced.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37653626

RESUMO

BACKGROUND: Dominating David-derived networks are widely studied due to their fractal nature, with applications in topology, chemistry, and computer sciences. The use of molecular structure descriptors is a standard procedure that is used to correlate the biological activity of molecules with their chemical structures, which can be useful in the field of pharmacology. OBJECTIVE: This article's goal is to develop analytically closed computing formulas for eccentricity-based descriptors of the second type of dominating David-derived derived network. Thermodynamic characteristics, physicochemical properties, and chemical and biological activities of chemical graphs are just a few of the many properties that may be determined using these computation formulas. METHODS: Vertex sets were initially divided according to their degrees, eccentricities, and cardinalities of occurrence. The eccentricity-based indices are then computed using some combinatorics and these partitions. RESULTS: Total eccentricity, average eccentricity, and the Zagreb index are distance-based topological indices utilized in this study for the second type of dominating David-derived network, denoted as D_2 (m). CONCLUSION: These calculations will assist the readers in estimating the fractal and difficult-to-handle thermodynamic and physicochemical aspects of chemical structure. Apart from configuration and impact resistance, the D_2 (m) design has been used for fundamental reasons in a variety of technical and scientific advancements.

5.
Int J Quantum Chem ; 121(9): e26594, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33612855

RESUMO

The spread of novel virus SARS-CoV-2, well known as COVID-19 has become a major health issue currently which has turned up to a pandemic worldwide. The treatment recommendations are variable. Lack of appropriate medication has worsened the disease. On the basis of prior research, scientists are testing drugs based on medical therapies for SARS and MERS. Many drugs which include lopinavir, ritonavir and thalidomide are listed in the new recommendations. A topological index is a type of molecular descriptor that simply defines numerical values associated with the molecular structure of a compound that is effectively used in modeling many physicochemical properties in numerous quantitative structure-property/activity relationship (QSPR/QSAR) studies. In this study, several degree-based and neighborhood degree sum-based topological indices for several antiviral drugs were investigated by using a M-polynomial and neighborhood M-polynomial methods. In addition, a QSPR was established between the various topological indices and various physicochemical properties of these antiviral drugs along with remdesivir, chloroquine, hydroxychloroquine and theaflavin was performed in order to assess the efficacy of the calculated topological indices. The obtained results reveal that topological indices under study have strong correlation with the physicochemical characteristics of the potential antiviral drugs. A biological activity (pIC50) of these compounds were also investigated by using multiple linear regressions (MLR) analysis.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa