Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Virol ; 96(13): e0056622, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35703545

RESUMO

The family of human papillomaviruses (HPV) includes over 400 genotypes. Genus α genotypes generally infect the anogenital mucosa, and a subset of these HPV are a necessary, but not sufficient, cause of cervical cancer. Of the 13 high-risk (HR) and 11 intermediate-risk (IR) HPV associated with cervical cancer, genotypes 16 and 18 cause 50% and 20% of cases, respectively, whereas HPV16 dominates in other anogenital and oropharyngeal cancers. A plethora of ßHPVs are associated with cutaneous squamous cell carcinoma (CSCC), especially in sun-exposed skin sites of epidermodysplasia verruciformis (EV), AIDS, and immunosuppressed patients. Licensed L1 virus-like particle (VLP) vaccines, such as Gardasil 9, target a subset of αHPV but no ßHPV. To comprehensively target both α- and ßHPVs, we developed a two-component VLP vaccine, RG2-VLP, in which L2 protective epitopes derived from a conserved αHPV epitope (amino acids 17 to 36 of HPV16 L2) and a consensus ßHPV sequence in the same region are displayed within the DE loop of HPV16 and HPV18 L1 VLP, respectively. Unlike vaccination with Gardasil 9, vaccination of wild-type and EV model mice (Tmc6Δ/Δ or Tmc8Δ/Δ) with RG2-VLP induced robust L2-specific antibody titers and protected against ß-type HPV5. RG2-VLP protected rabbits against 17 αHPV, including those not covered by Gardasil 9. HPV16- and HPV18-specific neutralizing antibody responses were similar between RG2-VLP- and Gardasil 9-vaccinated animals. However, only transfer of RG2-VLP antiserum effectively protected naive mice from challenge with all ßHPVs tested. Taken together, these observations suggest RG2-VLP's potential as a broad-spectrum vaccine to prevent αHPV-driven anogenital, oropharyngeal, and ßHPV-associated cutaneous cancers. IMPORTANCE Licensed preventive HPV vaccines are composed of VLPs derived by expression of major capsid protein L1. They confer protection generally restricted to infection by the αHPVs targeted by the up-to-9-valent vaccine, and their associated anogenital cancers and genital warts, but do not target ßHPV that are associated with CSCC in EV and immunocompromised patients. We describe the development of a two-antigen vaccine protective in animal models against known oncogenic αHPVs as well as diverse ßHPVs by incorporation into HPV16 and HPV18 L1 VLP of 20-amino-acid conserved protective epitopes derived from minor capsid protein L2.


Assuntos
Alphapapillomavirus , Carcinoma de Células Escamosas , Papillomaviridae , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Alphapapillomavirus/imunologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/imunologia , Carcinoma de Células Escamosas/prevenção & controle , Epitopos/imunologia , Feminino , Papillomavirus Humano 16/imunologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae/imunologia , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Coelhos , Vacinas de Partículas Semelhantes a Vírus/imunologia
2.
Nanomedicine ; 33: 102359, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33476764

RESUMO

Poly[di(carboxylatomethylphenoxy)phosphazene] (PCMP), a new member of polyphosphazene immunoadjuvant family, is synthesized. In vitro assessment of a new macromolecule revealed hydrolytic degradation profile and immunostimulatory activity comparable to its clinical stage homologue PCPP; however, PCMP was characterized by a beneficial reduced sensitivity to the ionic environment. In vivo evaluation of PCMP potency was conducted with human papillomavirus (HPV) virus-like particles (VLPs) based RG1-VLPs vaccine. In contrast with previously reported self-assembly of polyphosphazene adjuvants with proteins, which typically results in the formation of complexes with multimeric display of antigens, PCMP surface modified VLPs in a composition dependent pattern, which at a high polymer-to VLPs ratio led to stabilization of antigenic particles. Immunization experiments in mice demonstrated that PCMP adjuvanted RG1-VLPs vaccine induced potent humoral immune responses, in particular, on the level of highly desirable protective cross-neutralizing antibodies, and outperformed PCPP and Alhydrogel adjuvanted formulations.


Assuntos
Adjuvantes Imunológicos/química , Materiais Biocompatíveis/química , Compostos Organofosforados/química , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/química , Polímeros/química , Vacinas de Partículas Semelhantes a Vírus/química , Adjuvantes Imunológicos/farmacologia , Animais , Anticorpos Neutralizantes/química , Anticorpos Antivirais/química , Composição de Medicamentos , Liberação Controlada de Fármacos , Feminino , Humanos , Hidrogéis/química , Camundongos Endogâmicos BALB C , Vacinas contra Papillomavirus/farmacologia , Vacinação , Vacinas de Partículas Semelhantes a Vírus/farmacologia
4.
J Gen Virol ; 98(6): 1329-1333, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28635592

RESUMO

Equine sarcoids are common therapy-resistant skin tumours induced by bovine papillomavirus type 1 or 2 (BPV1, BPV2) infection. We have previously shown that prophylactic vaccination with BPV1 L1 virus-like particles (VLPs) efficiently protects horses from experimental BPV1-induced pseudo-sarcoid development. Here, we assessed BPV1 L1 VLP vaccine-mediated long-term protection from experimental tumour formation in seven horses 5 years after immunization with three different doses of BPV1 L1 VLPs, and three unvaccinated control animals. Horses were challenged by intradermal inoculation with infectious BPV1 virions at 10 sites on the neck (106 virions per injection). In vaccinated horses, BPV1 challenge did not result in any apparent lesions irrespective of vaccine dosage and BPV1-neutralizing antibody titres that had dropped considerably over time and below the detection limit in one individual. Control horses developed pseudo-sarcoids at all inoculation sites. We conclude that immunization of horses with BPV1 L1 VLPs induces long-lasting protection against experimental BPV1 virion-induced disease.


Assuntos
Papillomavirus Bovino 1/imunologia , Proteínas do Capsídeo/imunologia , Neoplasias Experimentais/prevenção & controle , Infecções por Papillomavirus/complicações , Sarcoidose/prevenção & controle , Neoplasias Cutâneas/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Modelos Animais de Doenças , Cavalos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/isolamento & purificação
5.
J Gen Virol ; 98(2): 230-241, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28284277

RESUMO

We have previously shown that immunization of horses with bovine papillomavirus type 1 (BPV1) L1 virus-like particles (VLPs) is safe and highly immunogenic and that BPV1 and bovine papillomavirus type 2 (BPV2) are closely related serotypes. Here we evaluated the protective potential of a BPV1 L1 VLP vaccine against experimental BPV1 and BPV2 challenge and studied the safety and immunogenicity of a bivalent equine papillomavirus type 2 (EcPV2)/BPV1 L1 VLP vaccine. Fourteen healthy horses were immunized with BPV1 L1 VLPs (100 µg per injection) plus adjuvant on days 0 and 28, while seven remained unvaccinated. On day 42, all 21 horses were challenged intradermally at 10 sites of the neck with 107 BPV1 virions per injection. In analogy, 14 horses immunized twice with EcPV2 plus BPV1 L1 VLPs (50 µg each) and seven control animals were challenged with 107 BPV2 virions per injection. Immunization with BPV1 L1 VLPs alone induced a robust antibody response (day 42 median titre: 12 800), and BPV1-inoculated skin remained unchanged in 13/14 vaccinated horses. Immunization with the bivalent vaccine was safe, resulted in lower median day 42 antibody titres of 400 for BPV1 and 1600 for EcPV2 and conferred significant yet incomplete cross-protection from BPV2-induced tumour formation, with 11/14 horses developing small, short-lived papules. Control horses developed pseudo-sarcoids at all inoculation sites. The monovalent BPV1 L1 VLP vaccine proved highly effective in protecting horses from BPV1-induced pseudo-sarcoid formation. Incomplete protection from BPV2-induced tumour development conferred by the bivalent vaccine is due to the poorer immune response by immune interference or lower cross-neutralization titres to heterologous BPV2 virions.


Assuntos
Papillomavirus Bovino 1/imunologia , Doenças dos Cavalos/prevenção & controle , Imunogenicidade da Vacina , Infecções por Papillomavirus/veterinária , Sarcoidose/veterinária , Dermatopatias/veterinária , Vacinação/veterinária , Vacinas Virais/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Papillomavirus Bovino 1/isolamento & purificação , DNA Viral/imunologia , DNA Viral/isolamento & purificação , Modelos Animais de Doenças , Doenças dos Cavalos/imunologia , Doenças dos Cavalos/virologia , Cavalos , Infecções por Papillomavirus/prevenção & controle , Sarcoidose/prevenção & controle , Dermatopatias/prevenção & controle , Vacinas Virais/administração & dosagem , Vírion/imunologia
6.
Acta Derm Venereol ; 96(4): 494-8, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26581127

RESUMO

Patients receiving tumour necrosis factor alpha (TNF-α) inhibitors are at increased risk of exacerbation of (myco-)bacterial and some viral infections. However, information on anogenital human papillomavirus (HPV) infection in these patients is sparse or conflicting. In this study 222 patients with psoriasis or inflammatory bowel disease (IBD), who received either anti-TNF-α inhibitors or alternatives (purine-, folic acid analogues, phototherapy, fumaric ester, mesalazine) continuously for at least 6 months, were evaluated for the presence of anogenital HPV-induced lesions, mucosal HPV DNA, and serological status of mucosal low-risk HPV6 and high-risk HPV16/HPV18. Hallmarks of anogenital HPV infection were more frequently detected in patients with psoriasis than in those with IBD. HPV-induced lesions, viral DNA, and seroprevalence were not elevated in participants with psoriasis or IBD, who received TNF-α inhibitors for a mean duration of 31.4 months (range 6-96 months) compared with recipients of alternative or no treatment. TNF-α blockade for a mean period of 31.4 months does not increase detectable anogenital HPV infection or disease.


Assuntos
Anti-Inflamatórios/uso terapêutico , Doenças do Ânus/epidemiologia , Condiloma Acuminado/epidemiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Infecções por Papillomavirus/epidemiologia , Psoríase/tratamento farmacológico , Infecções do Sistema Genital/epidemiologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adulto , Idoso , Anti-Inflamatórios/efeitos adversos , Doenças do Ânus/diagnóstico , Doenças do Ânus/imunologia , Doenças do Ânus/virologia , Áustria/epidemiologia , Condiloma Acuminado/diagnóstico , Condiloma Acuminado/imunologia , Condiloma Acuminado/virologia , Feminino , Humanos , Hospedeiro Imunocomprometido , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/epidemiologia , Doenças Inflamatórias Intestinais/imunologia , Masculino , Pessoa de Meia-Idade , Papillomaviridae/imunologia , Infecções por Papillomavirus/diagnóstico , Infecções por Papillomavirus/imunologia , Infecções por Papillomavirus/virologia , Prevalência , Estudos Prospectivos , Psoríase/diagnóstico , Psoríase/epidemiologia , Psoríase/imunologia , Infecções do Sistema Genital/diagnóstico , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/virologia , Medição de Risco , Fatores de Risco , Fatores de Tempo , Fator de Necrose Tumoral alfa/imunologia , Adulto Jovem
8.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851559

RESUMO

Papillomaviruses (PVs) are a family of small DNA tumor viruses that can induce benign lesions or cancer in vertebrates. The observation that animal PV capsid-proteins spontaneously self-assemble to empty, highly immunogenic virus-like particles (VLPs) has led to the establishment of vaccines that efficiently protect humans from specific PV infections and associated diseases. We provide an overview of PV-induced tumors in horses and other equids, discuss possible routes of PV transmission in equid species, and present recent developments aiming at introducing the PV VLP-based vaccine technology into equine medicine.


Assuntos
Proteínas do Capsídeo , Doenças dos Cavalos , Papillomaviridae , Infecções por Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Capsídeo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Cavalos , Papillomaviridae/genética , Infecções por Papillomavirus/prevenção & controle , Infecções por Papillomavirus/transmissão , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/transmissão , Doenças dos Cavalos/virologia
9.
Vaccine ; 41(31): 4480-4487, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37270364

RESUMO

The species and tissue specificities of HPV (human papillomavirus) for human infection and disease complicates the process of prophylactic vaccine development in animal models. HPV pseudoviruses (PsV) that carry only a reporter plasmid have been utilized in vivo to demonstrate cell internalization in mouse mucosal epithelium. The current study sought to expand the application of this HPV PsV challenge model with both oral and vaginal inoculation and to demonstrate its utility for testing vaccine-mediated dual-site immune protection against several HPV PsV types. We observed that passive transfer of sera from mice vaccinated with the novel experimental HPV prophylactic vaccine RG1-VLPs (virus-like particles) conferred HPV16-neutralizing as well as cross-neutralizing Abs against HPV39 in naïve recipient mice. Moreover, active vaccination with RG1-VLPs also conferred protection to challenge with either HPV16 or HPV39 PsVs at both vaginal and oral sites of mucosal inoculation. These data support the use of the HPV PsV challenge model as suitable for testing against diverse HPV types at two sites of challenge (vaginal vault and oral cavity) associated with the origin of the most common HPV-associated cancers, cervical cancer and oropharyngeal cancer.


Assuntos
Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Feminino , Camundongos , Animais , Humanos , Anticorpos Antivirais , Mucosa Bucal , Vacinação , Papillomaviridae , Papillomavirus Humano 16
10.
Cancer Discov ; 13(1): 70-84, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36213965

RESUMO

The skin is exposed to viral pathogens, but whether they contribute to the oncogenesis of skin cancers has not been systematically explored. Here we investigated 19 skin tumor types by analyzing off-target reads from commonly available next-generation sequencing data for viral pathogens. We identified human papillomavirus 42 (HPV42) in 96% (n = 45/47) of digital papillary adenocarcinoma (DPA), an aggressive cancer occurring on the fingers and toes. We show that HPV42, so far considered a nononcogenic, "low-risk" HPV, recapitulates the molecular hallmarks of oncogenic, "high-risk" HPVs. Using machine learning, we find that HPV-driven transformation elicits a germ cell-like transcriptional program conserved throughout all HPV-driven cancers (DPA, cervical carcinoma, and head and neck cancer). We further show that this germ cell-like transcriptional program, even when reduced to the top two genes (CDKN2A and SYCP2), serves as a fingerprint of oncogenic HPVs with implications for early detection, diagnosis, and therapy of all HPV-driven cancers. SIGNIFICANCE: We identify HPV42 as a uniform driver of DPA and add a new member to the short list of tumorigenic viruses in humans. We discover that all oncogenic HPVs evoke a germ cell-like transcriptional program with important implications for detecting, diagnosing, and treating all HPV-driven cancers. See related commentary by Starrett et al., p. 17. This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Adenocarcinoma de Células Claras , Adenocarcinoma Papilar , Neoplasias Ósseas , Neoplasias da Mama , Infecções por Papillomavirus , Neoplasias Cutâneas , Neoplasias do Colo do Útero , Feminino , Humanos , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Papillomaviridae/genética , Células Germinativas/patologia
11.
Virology ; 575: 63-73, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36070626

RESUMO

Human alphapapillomaviruses (αHPV) infect genital mucosa, and a high-risk subset is a necessary cause of cervical cancer. Licensed L1 virus-like particle (VLP) vaccines offer immunity against the nine most common αHPV associated with cervical cancer and genital warts. However, vaccination with an αHPV L2-based multimer vaccine, α11-88x5, protected mice and rabbits from vaginal and skin challenge with diverse αHPV types. While generally clinically inapparent, human betapapillomaviruses (ßHPV) are possibly associated with cutaneous squamous cell carcinoma (CSCC) in epidermodysplasia verruciformis (EV) and immunocompromised patients. Here we show that α11-88x5 vaccination protected wild type and EV model mice against HPV5 challenge. Passive transfer of antiserum conferred protection independently of Fc receptors (FcR) or Gr-1+ phagocytes. Antisera demonstrated robust antibody titers against ten ßHPV by L1/L2 VLP ELISA and neutralized and protected against challenge by 3 additional ßHPV (HPV49/76/96). Thus, unlike the licensed vaccines, α11-88x5 vaccination elicits broad immunity against αHPV and ßHPV.


Assuntos
Alphapapillomavirus , Betapapillomavirus , Carcinoma de Células Escamosas , Epidermodisplasia Verruciforme , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Neoplasias Cutâneas , Neoplasias do Colo do Útero , Vacinas de Partículas Semelhantes a Vírus , Animais , Betapapillomavirus/genética , Proteínas do Capsídeo , Epidermodisplasia Verruciforme/prevenção & controle , Feminino , Humanos , Soros Imunes , Camundongos , Vacinas contra Papillomavirus/genética , Coelhos , Receptores Fc , Vacinação
12.
Front Immunol ; 13: 1010790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263027

RESUMO

Licensed L1-VLP-based immunizations against high-risk mucosal human papillomavirus (HPV) types have been a great success in reducing anogenital cancers, although they are limited in their cross-protection against HPV types not covered by the vaccine. Further, their utility in protection against cutaneous HPV types, of which some contribute to non-melanoma skin cancer (NMSC) development, is rather low. Next generation vaccines achieve broadly cross-protective immunity against highly conserved sequences of L2. In this exploratory study, we tested two novel HPV vaccine candidates, HPV16 RG1-VLP and CUT-PANHPVAX, in the preclinical natural infection model Mastomys coucha. After immunization with either vaccines, a mock control or MnPV L1-VLPs, the animals were experimentally infected and monitored. Besides vaccine-specific seroconversion against HPV L2 peptides, the animals also developed cross-reactive antibodies against the cutaneous Mastomys natalensis papillomavirus (MnPV) L2, which were cross-neutralizing MnPV pseudovirions in vitro. Further, both L2-based vaccines also conferred in vivo protection as the viral loads in plucked hair after experimental infection were lower compared to mock-vaccinated control animals. Importantly, the formation of neutralizing antibodies, whether directed against L1-VLPs or L2, was able to prevent skin tumor formation and even microscopical signs of MnPV infection in the skin. For the first time, our study shows the proof-of-principle of next generation L2-based vaccines even across different PV genera in an infection animal model with its genuine PV. It provides fundamental insights into the humoral immunity elicited by L2-based vaccines against PV-induced skin tumors, with important implications to the design of next generation HPV vaccines.


Assuntos
Neoplasias , Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Camundongos , Animais , Humanos , Testes de Neutralização , Proteínas do Capsídeo , Camundongos Endogâmicos BALB C , Papillomaviridae , Anticorpos Neutralizantes , Peptídeos
13.
Int J Cancer ; 128(5): 1114-9, 2011 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20839258

RESUMO

To understand likelihood of type replacement after vaccination against the high-risk human papillomavirus (HPV) types, we evaluated competition of the seven most common genital HPV types in a population sample of unvaccinated, fertile-aged Finnish women. First trimester sera from two consecutive pregnancies were retrieved from 3,183 Finnish women (mean age, 23.1 years) of whom 42.3% had antibodies to at least one HPV type (6/11/16/18/31/33/45) at the baseline. Antibody positivity to more than one HPV types by the second pregnancy was common among the baseline HPV seropositives. However, compared to baseline HPV-seronegative women, significantly increased incidence rate ratios (IRRs), indicating an increased risk to seroconvert for another HPV type, were consistently noted only for HPV33 among baseline HPV16 or HPV18 antibody (ab)-positive women: HPV(16ab only) (→) (16&33ab) IRR 2.9 [95% confidence interval (CI) 1.6-5.4] and HPV(18ab only) (→) (18&33ab) IRR 2.5 (95% CI 1.1-6.0), irrespectively of the presence of antibodies to other HPV types at baseline: HPV(16ab) (→) (16&33ab) IRR 3.2 (95% CI 2.0-5.2) and HPV(18ab) (→) (18&33ab) IRR 3.6 (95% CI 2.1-5.9). Our findings suggest a possible competitive advantage for HPV33 over other genital HPV types in the unvaccinated population. HPV33 should be monitored for type replacement after HPV mass vaccination.


Assuntos
Alphapapillomavirus/imunologia , Vacinas Virais/administração & dosagem , Alphapapillomavirus/classificação , Anticorpos Antivirais/sangue , Estudos de Coortes , Feminino , Finlândia , Humanos , Gravidez
14.
J Gen Virol ; 92(Pt 10): 2437-2445, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21715602

RESUMO

Bovine papillomavirus types 1 and 2 (BPV-1 and BPV-2) are known to induce common equine skin tumours, termed sarcoids. Recently, it was demonstrated that vaccination with BPV-1 virus-like particles (VLPs) is safe and highly immunogenic in horses. To establish a BPV-1 challenge model for evaluation of the protective potential of BPV-1 VLPs, four foals were injected intradermally with infectious BPV-1 virions and with viral genome-based and control inocula, and monitored daily for tumour development. Blood was taken before inoculation and at weekly intervals. BPV-1-specific serum antibodies were detected by a pseudo-virion neutralization assay. Total nucleic acids extracted from tumours, intact skin and PBMCs were tested for the presence of BPV-1 DNA and mRNA using PCR and RT-PCR, respectively. Intralesional E5 oncoprotein expression was determined by immunofluorescence. Pseudo-sarcoids developed exclusively at sites inoculated with virions. Tumours became palpable 11-32 days after virion challenge, reached a size of ≤20 mm in diameter and then resolved in ≤6 months. No neutralizing anti-BPV-1 serum antibodies were detectable pre- or post-challenge. BPV-1 DNA was present in lesions but not in intact skin. In PBMCs, viral DNA was already detectable before lesions were first palpable, in concentrations correlating directly with tumour growth kinetics. PBMCs from two of two foals also harboured E5 mRNA. Immunofluorescence revealed the presence of the E5 protein in tumour fibroblasts, but not in the apparently normal epidermis overlying the lesions. Together with previous findings obtained in horses and cows, these data suggest that papillomavirus infection may include a viraemic phase.


Assuntos
Papillomavirus Bovino 1/patogenicidade , Modelos Animais de Doenças , Leucócitos Mononucleares/virologia , Sarcoidose/patologia , Sarcoidose/virologia , Animais , Anticorpos Antivirais/sangue , DNA Viral/genética , DNA Viral/isolamento & purificação , Técnica Direta de Fluorescência para Anticorpo , Cavalos , Testes de Neutralização , Proteínas Oncogênicas Virais/biossíntese , Proteínas Oncogênicas Virais/genética , RNA Mensageiro/genética , RNA Mensageiro/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/patologia , Pele/virologia
15.
J Clin Med ; 10(5)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802456

RESUMO

Licensed human papillomavirus (HPV) vaccines contain virus-like particles (VLPs) self-assembled from L1 major-capsid proteins that are remarkably effective prophylactic immunogens. However, the induced type-restricted immune response limits coverage to the included vaccine types, and costly multiplex formulations, restrictive storage and distribution conditions drive the need for next generation HPV vaccines. Vaccine candidates based upon the minor structural protein L2 are particularly promising because conserved N-terminal epitopes induce broadly cross-type neutralizing and protective antibodies. Several strategies to increase the immunological potency of such epitopes are being investigated, including concatemeric multimers, fusion to toll-like receptors ligands or T cell epitopes, as well as immunodominant presentation by different nanoparticle or VLP structures. Several promising L2-based vaccine candidates have reached or will soon enter first-in-man clinical studies. RG1-VLP present the HPV16L2 amino-acid 17-36 conserved neutralization epitope "RG1" repetitively and closely spaced on an immunodominant surface loop of HPV16 L1-VLP and small animal immunizations provide cross-protection against challenge with all medically-significant high-risk and several low-risk HPV types. With a successful current good manufacturing practice (cGMP) campaign and this promising breadth of activity, even encompassing cross-neutralization of several cutaneous HPV types, RG1-VLP are ready for a first-in-human clinical study. This review aims to provide a general overview of these candidates with a special focus on the RG1-VLP vaccine and its road to the clinic.

16.
Hum Vaccin Immunother ; 17(8): 2748-2761, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33573433

RESUMO

Current human papillomavirus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain for which vaccine coverage is lacking. In addition, all current HPV vaccines rely on aluminum salt-based adjuvant formulations that function through unclear mechanisms with few substitutes available. In an effort to expand the toolbox of available adjuvants suitable for HPV vaccines, we compared the immunogenicity of the RG1-VLP (virus-like particle) vaccine in BALB/c mice when formulated with either the aluminum hydroxide adjuvant Alhydrogel or the novel polyphosphazene macromolecular adjuvant poly[di (carboxylatoethylphenoxy) phosphazene] (PCEP). PCEP-formulated RG1-VLPs routinely outperformed VLP/Alhydrogel in several measurements of VLP-specific humoral immunity, including consistent improvements in the magnitude of antibody (Ab) responses to both HPV16-L1 and the L2 RG1 epitope as well as neutralizing titers to HPV16 and cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39. Dose-sparing studies indicated that RG1-VLPs could be reduced in dose by 75% and the presence of PCEP ensured activity comparable to a full VLP dose adjuvanted by Alhydrogel. In addition, levels of HPV16-L1 and -L2-specific Abs were achieved after two vaccinations with PCEP as adjuvant that were equivalent to or greater than levels achieved with three vaccinations with Alhydrogel alone, indicating that the presence of PCEP resulted in accelerated immune responses that could allow for a decreased dose schedule. Given the extensive clinical track record of polyphosphazenes, these data suggest that substitution of alum-based adjuvants with PCEP for the RG1-VLP vaccine could lead to rapid seropositivity requiring fewer boosts, the dose-sparing of commercial VLP-based vaccines, and the establishment of longer-lasting humoral responses to HPV.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Hidróxido de Alumínio , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organofosforados , Infecções por Papillomavirus/prevenção & controle , Polímeros
17.
Vaccine ; 39(2): 292-302, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33309485

RESUMO

Current human papilloma virus (HPV) vaccines provide substantial protection against the most common HPV types responsible for oral and anogenital cancers, but many circulating cancer-causing types remain that lack vaccine coverage. The novel RG1-VLP (virus-like particle) vaccine candidate utilizes the HPV16-L1 subunit as a backbone to display an inserted HPV16-L2 17-36 a.a. "RG1" epitope; the L2 RG1 epitope is conserved across many HPV types and the generation of cross-neutralizing antibodies (Abs) against which has been demonstrated. In an effort to heighten the immunogenicity of the RG1-VLP vaccine, we compared in BALB/c mice adjuvant formulations consisting of novel bacterial enzymatic combinatorial chemistry (BECC)-derived toll-like receptor 4 (TLR4) agonists and the aluminum hydroxide adjuvant Alhydrogel. In the presence of BECC molecules, consistent improvements in the magnitude of Ab responses to both HPV16-L1 and the L2 RG1 epitope were observed compared to Alhydrogel alone. Furthermore, neutralizing titers to HPV16 as well as cross-neutralization of pseudovirion (PsV) types HPV18 and HPV39 were augmented in the presence of BECC agonists as well. Levels of L1 and L2-specific Abs were achieved after two vaccinations with BECC/Alhydrogel adjuvant that were equivalent to or greater than levels achieved with 3 vaccinations with Alhydrogel alone, indicating that the presence of BECC molecules resulted in accelerated immune responses that could allow for a decreased dose schedule for VLP-based HPV vaccines. In addition, dose-sparing studies indicated that adjuvantation with BECC/Alhydrogel allowed for a 75% reduction in antigen dose while still retaining equivalent magnitudes of responses to the full VLP dose with Alhydrogel. These data suggest that adjuvant optimization of HPV VLP-based vaccines can lead to rapid immunity requiring fewer boosts, dose-sparing of VLPs expensive to produce, and the establishment of a longer-lasting humoral immunity.


Assuntos
Proteínas Oncogênicas Virais , Infecções por Papillomavirus , Vacinas contra Papillomavirus , Vacinas de Partículas Semelhantes a Vírus , Animais , Anticorpos Antivirais , Proteínas do Capsídeo , Camundongos , Camundongos Endogâmicos BALB C , Papillomaviridae , Infecções por Papillomavirus/prevenção & controle , Receptor 4 Toll-Like
18.
J Virol ; 83(19): 10085-95, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19640991

RESUMO

The amino (N) terminus of the human papillomavirus (HPV) minor capsid protein L2 can induce low-titer, cross-neutralizing antibodies. The aim of this study was to improve immunogenicity of L2 peptides by surface display on highly ordered, self-assembled virus-like particles (VLP) of major capsid protein L1, and to more completely characterize neutralization epitopes of L2. Overlapping peptides comprising amino acids (aa) 2 to 22 (hereafter, chimera or peptide 2-22), 13 to 107, 18 to 31, 17 to 36, 35 to 75, 75 to 112, 115 to 154, 149 to 175, and 172 to 200 of HPV type 16 (HPV16) L2 were genetically engineered into the DE surface loop of bovine papillomavirus type 1 L1 VLP. Except for chimeras 35-75 and 13-107, recombinant fusion proteins assembled into VLP. Vaccination of rabbits with Freund's adjuvanted native VLP induced higher L2-specific antibody titers than vaccination with corresponding sodium dodecyl sulfate-denatured proteins. Immune sera to epitopes within residues 13 to 154 neutralized HPV16 in pseudovirion neutralization assays, whereas chimera 17-36 induced additional cross-neutralization to divergent high-risk HPV18, -31, -45, -52, and -58; low-risk HPV11; and beta-type HPV5 (titers of 50 to 10,000). Aluminum hydroxide-monophosphoryl lipid A (Alum-MPL)-adjuvanted VLP induced similar patterns of neutralization in both rabbits and mice, albeit with 100-fold-lower titers than Freund's adjuvant. Importantly, Alum-MPL-adjuvanted immunization with chimeric HPV16L1-HPV16L2 (peptide 17-36) VLP induced neutralization or cross-neutralization of HPV16, -18, -31, -45, -52, and -58; HPV6 and -11; and HPV5 (titers of 50 to 100,000). Immunization with HPV16 L1-HPV16 L2 (chimera 17-36) VLP in adjuvant applicable for human use induces broad-spectrum neutralizing antibodies against HPV types evolutionarily divergent to HPV16 and thus may protect against infection with mucosal high-risk, low-risk, and beta HPV types and associated disease.


Assuntos
Baculoviridae/metabolismo , Proteínas do Capsídeo/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Vacinas contra Papillomavirus/metabolismo , Animais , Capsídeo/química , Epitopos/química , Camundongos , Camundongos Endogâmicos BALB C , Microscopia Eletrônica de Transmissão/métodos , Peptídeos/química , Estrutura Terciária de Proteína , Coelhos , Proteínas Recombinantes de Fusão/química , Risco
19.
Am J Pathol ; 174(1): 136-43, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19095951

RESUMO

The expression pattern of human papillomavirus (HPV) capsid antigen L2 is poorly described, and the significance of its localization with both promyelocytic leukemia protein (PML) and Daxx in a subnuclear domain, nuclear domain 10 (ND-10), when ectopically expressed in tissue culture cells is controversial. To address whether ND-10 localization of L2 occurs in natural cervical lesions, we used a HPV16 and HPV18 L2-specific monoclonal antibody (RG-1), in addition to rabbit antiserum to HPV6 L2, to localize L2. Immunohistochemical staining with RG-1 produced diffuse staining in the nuclei of some cells located within the superficial epithelial layers in eight of nine cases of HPV16/18(+) cervical intraepithelial neoplasia grade 1 (CIN1); however, no staining was observed in HPV16/18(+) high-grade CIN (0 of 8 cases), normal cervical epithelium (0 of 20 cases), cervical squamous cell carcinoma (0 of 102 cases), adenocarcinoma (0 of 51 cases), or adenosquamous carcinoma (0 of 6 cases). HPV16/18(+) cervical lesions that express L2 exhibit higher HPV16/18 genome copies per cell compared with those that do not positively stain with RG-1 (P = 0.04). RG-1 staining of HeLa cells transfected with L2 expression constructs was frequently concentrated in the ND-10, particularly in cells expressing high levels of L2, and co-localized with the cellular markers of ND-10, PML, and Daxx. In contrast, L2 was primarily diffuse within the nucleus and distinct from ND-10 as defined by PML immunofluorescent staining in CIN lesions, condylomata, and HPV16-transduced organotypic cultures.


Assuntos
Proteínas do Capsídeo/metabolismo , Proteínas Oncogênicas Virais/metabolismo , Infecções por Papillomavirus/metabolismo , Neoplasias do Colo do Útero/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anticorpos Monoclonais , Western Blotting , Proteínas Correpressoras , Feminino , Imunofluorescência , Prepúcio do Pênis , Células HeLa , Humanos , Imuno-Histoquímica , Masculino , Chaperonas Moleculares , Proteínas Nucleares/metabolismo , Técnicas de Cultura de Órgãos , Proteína da Leucemia Promielocítica , Transporte Proteico , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
20.
Scand J Infect Dis ; 42(6-7): 522-6, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20180681

RESUMO

Although infections with multiple human papillomavirus (HPV) types have been reported widely, more information is needed on the occurrence of the different types. We determined the distribution of seroprevalences to multiple HPV types in Finland and Uganda to compare the epidemiology of the different HPV types in the 2 populations. Serum samples were obtained from 2784 Finnish and 1964 Ugandan women (mean ages 22 y and 25 y, respectively) of whom 44% and 57%, respectively, had antibodies to at least 1 of the 7 HPV types (6, 11, 16, 18, 31, 33, 45) tested (p < 0.001). Multiple HPV antibody positivity was common. HPV45-seropositive Finns had a higher risk of having antibodies to other high-risk HPV types: HPV18 (odds ratio (OR) = 10.9), HPV31 (OR 6.1), HPV33 (OR 12.2), than their Ugandan counterparts: HPV18 (OR 3.4), HPV31 (OR 2.2), HPV33 (OR 3.3). Increased estimates for being double antibody-positive were also noted among HPV18- and HPV16-seropositive women, but there were no major differences between HPV16-seropositive Finns and Ugandans. In addition to biological and behavioural factors, iatrogenic and societal factors (screening vs no screening) may also result in the different occurrence of infections with the high-risk HPV types in Finland and Uganda.


Assuntos
Alphapapillomavirus/classificação , Infecções por Papillomavirus/epidemiologia , Adolescente , Adulto , Alphapapillomavirus/isolamento & purificação , Anticorpos Antivirais/sangue , Feminino , Finlândia/epidemiologia , Soropositividade para HIV , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Razão de Chances , Infecções por Papillomavirus/virologia , Fatores de Risco , Estudos Soroepidemiológicos , Uganda/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa