Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658857

RESUMO

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


Assuntos
DNA Circular , Genoma de Planta , Retroelementos , Solanum lycopersicum , Sequências Repetidas Terminais , Solanum lycopersicum/genética , DNA Circular/genética , Melhoramento Vegetal , Sequenciamento por Nanoporos/métodos , Introgressão Genética , Análise de Sequência de DNA/métodos , DNA de Plantas/genética
2.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069377

RESUMO

Genetic diversity is a key factor for plant breeding. The birth of novel genic and genomic variants is also crucial for plant adaptation in nature. Therefore, the genomes of almost all living organisms possess natural mutagenic mechanisms. Transposable elements (TEs) are a major mutagenic force driving genetic diversity in wild plants and modern crops. The relatively rare TE transposition activity during the thousand-year crop domestication process has led to the phenotypic diversity of many cultivated species. The utilization of TE mutagenesis by artificial and transient acceleration of their activity in a controlled mode is an attractive foundation for a novel type of mutagenesis called TE-mediated biological mutagenesis. Here, I focus on TEs as mutagenic sources for plant breeding and discuss existing and emerging transgene-free approaches for TE activation in plants. Furthermore, I also review the non-randomness of TE insertions in a plant genome and the molecular and epigenetic factors involved in shaping TE insertion preferences. Additionally, I discuss the molecular mechanisms that prevent TE transpositions in germline plant cells (e.g., meiocytes, pollen, egg and embryo cells, and shoot apical meristem), thereby reducing the chances of TE insertion inheritance. Knowledge of these mechanisms can expand the TE activation toolbox using novel gene targeting approaches. Finally, the challenges and future perspectives of plant populations with induced novel TE insertions (iTE plant collections) are discussed.


Assuntos
Elementos de DNA Transponíveis , Melhoramento Vegetal , Elementos de DNA Transponíveis/genética , Genoma de Planta , Produtos Agrícolas/genética , Mutagênese , Evolução Molecular
3.
J Integr Plant Biol ; 65(10): 2242-2261, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37555565

RESUMO

Transposable element insertions (TEIs) are an important source of genomic innovation by contributing to plant adaptation, speciation, and the production of new varieties. The often large, complex plant genomes make identifying TEIs from short reads difficult and expensive. Moreover, rare somatic insertions that reflect mobilome dynamics are difficult to track using short reads. To address these challenges, we combined Cas9-targeted Nanopore sequencing (CANS) with the novel pipeline NanoCasTE to trace both genetically inherited and somatic TEIs in plants. We performed CANS of the EVADÉ (EVD) retrotransposon in wild-type Arabidopsis thaliana and rapidly obtained up to 40× sequence coverage. Analysis of hemizygous T-DNA insertion sites and genetically inherited insertions of the EVD transposon in the ddm1 (decrease in DNA methylation 1) genome uncovered the crucial role of DNA methylation in shaping EVD insertion preference. We also investigated somatic transposition events of the ONSEN transposon family, finding that genes that are downregulated during heat stress are preferentially targeted by ONSENs. Finally, we detected hypomethylation of novel somatic insertions for two ONSENs. CANS and NanoCasTE are effective tools for detecting TEIs and exploring mobilome organization in plants in response to stress and in different genetic backgrounds, as well as screening T-DNA insertion mutants and transgenic plants.


Assuntos
Arabidopsis , Elementos de DNA Transponíveis , Arabidopsis/genética , Sistemas CRISPR-Cas , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , Sequenciamento por Nanoporos , Plantas Geneticamente Modificadas/genética
4.
Genome Res ; 29(9): 1464-1477, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31387879

RESUMO

Genomes contain millions of short (<100 codons) open reading frames (sORFs), which are usually dismissed during gene annotation. Nevertheless, peptides encoded by such sORFs can play important biological roles, and their impact on cellular processes has long been underestimated. Here, we analyzed approximately 70,000 transcribed sORFs in the model plant Physcomitrella patens (moss). Several distinct classes of sORFs that differ in terms of their position on transcripts and the level of evolutionary conservation are present in the moss genome. Over 5000 sORFs were conserved in at least one of 10 plant species examined. Mass spectrometry analysis of proteomic and peptidomic data sets suggested that tens of sORFs located on distinct parts of mRNAs and long noncoding RNAs (lncRNAs) are translated, including conserved sORFs. Translational analysis of the sORFs and main ORFs at a single locus suggested the existence of genes that code for multiple proteins and peptides with tissue-specific expression. Functional analysis of four lncRNA-encoded peptides showed that sORFs-encoded peptides are involved in regulation of growth and differentiation in moss. Knocking out lncRNA-encoded peptides resulted in a decrease of moss growth. In contrast, the overexpression of these peptides resulted in a diverse range of phenotypic effects. Our results thus open new avenues for discovering novel, biologically active peptides in the plant kingdom.


Assuntos
Bryopsida/metabolismo , Fases de Leitura Aberta , Biossíntese de Proteínas , Proteômica/métodos , Bryopsida/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Espectrometria de Massas , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , RNA Longo não Codificante , Análise de Sequência de DNA
5.
Int J Mol Sci ; 23(18)2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-36142398

RESUMO

The ability to directly look into genome sequences has opened great opportunities in plant breeding. Yet, the assembly of full-length chromosomes remains one of the most difficult problems in modern genomics. Genetic maps are commonly used in de novo genome assembly and are constructed on the basis of a statistical analysis of the number of recombinations. This may affect the accuracy of the ordering and orientation of scaffolds within the chromosome, especially in the region of recombination suppression. Moreover, it is impossible to assign contigs lacking DNA markers. Here, we report the use of Tyr-FISH to determine the position of the short DNA sequence of markers and non-mapped unique copy sequence on the physical chromosomes of a large-genome onion (Allium cepa L.). In order to minimize potential background masking of the target signal, we improved our earlier developed pipeline for probe design. A total of 23 markers were located on physical chromosomes 2 and 6. The order of markers was corrected by the integration of genetic, pseudochromosome maps and cytogenetic maps. Additionally, the position of the mlh1 gene, which was not on the genetic map, was defined on physical chromosome 2. Tyr-FISH mapping showed that the order of 23.1% (chromosome 2) and 27.3% (chromosome 6) of the tested genes differed between physical chromosomes and pseudochromosomes. The results can be used for the improvement of pseudochromosome 2 and 6 assembly. The present study aims to demonstrate the value of the in situ visualization of DNA sequences in chromosome-scaffold genome assembly.


Assuntos
Cromossomos de Plantas , Cebolas , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Marcadores Genéticos , Cebolas/genética , Melhoramento Vegetal
6.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070753

RESUMO

In situ imaging of molecular markers on a physical chromosome is an indispensable tool for refining genetic maps and validation genome assembly at the chromosomal level. Despite the tremendous progress in genome sequencing, the plant genome assembly at the chromosome level remains a challenge. Recently developed optical and Hi-C mapping are aimed at assistance in genome assembly. For high confidence in the genome assembly at chromosome level, more independent approaches are required. The present study is aimed at refining an ultrasensitive Tyr-FISH technique and developing a reliable and simple method of in situ mapping of a short unique DNA sequences on plant chromosomes. We have carefully analyzed the critical steps of the Tyr-FISH to find out the reasons behind the flaws of this technique. The accurate visualization of markers/genes appeared to be significantly dependent on the means of chromosome slide preparation, probe design and labeling, and high stringency washing. Appropriate adjustment of these steps allowed us to detect a short DNA sequence of 1.6 Kb with a frequency of 51.6%. Based on our results, we developed a more reliable and simple protocol for dual-color Tyr-FISH visualization of unique short DNA sequences on plant chromosomes. This new protocol can allow for more accurate determination of the physical distance between markers and can be applied for faster integration of genetic and cytogenetic maps.


Assuntos
Mapeamento Cromossômico/métodos , Cromossomos de Plantas/química , Genoma de Planta , Hibridização in Situ Fluorescente , Cebolas/genética , Coloração e Rotulagem/métodos , Cromossomos de Plantas/metabolismo , Sondas de DNA/síntese química , Sondas de DNA/metabolismo , DNA de Plantas/genética , DNA de Plantas/metabolismo , Ligação Genética , Marcadores Genéticos , Cebolas/metabolismo , Transcriptoma
7.
Int J Mol Sci ; 21(23)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297579

RESUMO

LTR retrotransposons (RTEs) play a crucial role in plant genome evolution and adaptation. Although RTEs are generally silenced in somatic plant tissues under non-stressed conditions, some expressed RTEs (exRTEs) escape genome defense mechanisms. As our understanding of exRTE organization in plants is rudimentary, we systematically surveyed the genomic and transcriptomic organization and mobilome (transposition) activity of sunflower (Helianthus annuus L.) exRTEs. We identified 44 transcribed RTEs in the sunflower genome and demonstrated their distinct genomic features: more recent insertion time, longer open reading frame (ORF) length, and smaller distance to neighboring genes. We showed that GAG-encoding ORFs are present at significantly higher frequencies in exRTEs, compared with non-expressed RTEs. Most exRTEs exhibit variation in copy number among sunflower cultivars and one exRTE Gagarin produces extrachromosomal circular DNA in seedling, demonstrating recent and ongoing transposition activity. Nanopore direct RNA sequencing of full-length RTE RNA revealed complex patterns of alternative splicing in RTE RNAs, resulting in isoforms that carry ORFs for distinct RTE proteins. Together, our study demonstrates that tens of expressed sunflower RTEs with specific genomic organization shape the hidden layer of the transcriptome, pointing to the evolution of specific strategies that circumvent existing genome defense mechanisms.


Assuntos
Genoma de Planta , Helianthus/genética , Retroelementos , Sequências Repetidas Terminais , Transcriptoma , Processamento Alternativo , Variações do Número de Cópias de DNA , Helianthus/metabolismo , Fases de Leitura Aberta
8.
BMC Evol Biol ; 19(Suppl 1): 49, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813893

RESUMO

BACKGROUND: Members of different sections of the genus Linum are characterized by wide variability in size, morphology and number of chromosomes in karyotypes. Since such variability is determined mainly by the amount and composition of repeated sequences, we conducted a comparative study of the repeatomes of species from four sections forming a clade of blue-flowered flax. Based on the results of high-throughput genome sequencing performed in this study as well as available WGS data, bioinformatic analyses of repeated sequences from 12 flax samples were carried out using a graph-based clustering method. RESULTS: It was found that the genomes of closely related species, which have a similar karyotype structure, are also similar in the repeatome composition. In contrast, the repeatomes of karyologically distinct species differed significantly, and no similar tandem-organized repeats have been identified in their genomes. At the same time, many common mobile element families have been identified in genomes of all species, among them, Athila Ty3/gypsy LTR retrotransposon was the most abundant. The 30-chromosome members of the sect. Linum (including the cultivated species L. usitatissimum) differed significantly from other studied species by a great number of satellite DNA families as well as their relative content in genomes. CONCLUSIONS: The evolution of studied flax species was accompanied by waves of amplification of satellite DNAs and LTR retrotransposons. The observed inverse correlation between the total contents of dispersed repeats and satellite DNAs allowed to suggest a relationship between both classes of repeating sequences. Significant interspecific differences in satellite DNA sets indicated a high rate of evolution of this genomic fraction. The phylogenetic relationships between the investigated flax species, obtained by comparison of the repeatomes, agreed with the results of previous molecular phylogenetic studies.


Assuntos
DNA de Plantas/genética , Linho/genética , Flores/metabolismo , Genoma de Planta/genética , Pigmentação , Sequências Repetitivas de Ácido Nucleico/genética , Sequência de Bases , Mapeamento Cromossômico , Evolução Molecular , Linho/metabolismo , Cariótipo , Cariotipagem , Filogenia , Retroelementos/genética
9.
BMC Plant Biol ; 19(1): 9, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30616513

RESUMO

BACKGROUND: Cryptic peptides (cryptides) are small bioactive molecules generated via degradation of functionally active proteins. Only a few examples of plant cryptides playing an important role in plant defense have been reported to date, hence our knowledge about cryptic signals hidden in protein structure remains very limited. Moreover, little is known about how stress conditions influence the size of endogenous peptide pools, and which of these peptides themselves have biological functions is currently unclear. RESULTS: Here, we used mass spectrometry to comprehensively analyze the endogenous peptide pools generated from functionally active proteins inside the cell and in the secretome from the model plant Physcomitrella patens. Overall, we identified approximately 4,000 intracellular and approximately 500 secreted peptides. We found that the secretome and cellular peptidomes did not show significant overlap and that respective protein precursors have very different protein degradation patterns. We showed that treatment with the plant stress hormone methyl jasmonate induced specific proteolysis of new functional proteins and the release of bioactive peptides having an antimicrobial activity and capable to elicit the expression of plant defense genes. Finally, we showed that the inhibition of protease activity during methyl jasmonate treatment decreased the secretome antimicrobial potential, suggesting an important role of peptides released from proteins in immune response. CONCLUSIONS: Using mass-spectrometry, in vitro experiments and bioinformatics analysis, we found that methyl jasmonate acid induces significant changes in the peptide pools and that some of the resulting peptides possess antimicrobial and regulatory activities. Moreover, our study provides a list of peptides for further study of potential plant cryptides.


Assuntos
Acetatos/farmacologia , Anti-Infecciosos/metabolismo , Bryopsida/metabolismo , Ciclopentanos/farmacologia , Oxilipinas/farmacologia , Peptídeos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Anti-Infecciosos/isolamento & purificação , Bacillus subtilis/efeitos dos fármacos , Bryopsida/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Espectrometria de Massas , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação
10.
J Pept Sci ; 25(2): e3138, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30575224

RESUMO

Plant secretome comprises dozens of secreted proteins. However, little is known about the composition of the whole secreted peptide pools and the proteases responsible for the generation of the peptide pools. The majority of studies focus on target detection and characterization of specific plant peptide hormones. In this study, we performed a comprehensive analysis of the whole extracellular peptidome, using moss Physcomitrella patens as a model. Hundreds of modified and unmodified endogenous peptides that originated from functional and nonfunctional protein precursors were identified. The plant proteases responsible for shaping the pool of endogenous peptides were predicted. Salicylic acid (SA) influenced peptide production in the secretome. The proteasome activity was altered upon SA treatment, thereby influencing the composition of the peptide pools. These results shed more light on the role of proteases and posttranslational modification in the "active management" of the extracellular peptide pool in response to stress conditions. It also identifies a list of potential peptide hormones in the moss secretome for further analysis.


Assuntos
Bryopsida/efeitos dos fármacos , Bryopsida/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Ácido Salicílico/farmacologia , Bryopsida/enzimologia , Peptídeos/química , Ácido Salicílico/química
11.
BMC Evol Biol ; 17(Suppl 2): 253, 2017 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-29297314

RESUMO

BACKGROUND: The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. RESULTS: High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). CONCLUSIONS: High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the phylogeny of blue-flowered flax species and also reveal intra- and interspecific divergence of the rRNA gene sequences.


Assuntos
Evolução Biológica , Linho/genética , Genes de Plantas , Genes de RNAr , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Sequência Consenso/genética , DNA Ribossômico/genética , Variação Genética , Cariótipo , Metáfase , Filogenia , Sequências Repetitivas de Ácido Nucleico/genética , Especificidade da Espécie
12.
Mol Genet Genomics ; 292(2): 453-464, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28150039

RESUMO

Tandem repeats are often associated with important chromosomal landmarks, such as centromeres, telomeres, subtelomeric, and other heterochromatic regions, and can be good candidates for molecular cytogenetic markers. Tandem repeats present in many plant species demonstrate dramatic differences in unit length, proportion in the genome, and chromosomal organization. Members of genus Allium with their large genomes represent a challenging task for current genetics. Using the next generation sequencing data, molecular, and cytogenetic methods, we discovered two tandemly organized repeats in the Allium fistulosum genome (2n = 2C = 16), HAT58 and CAT36. Together, these repeats comprise 0.25% of the bunching onion genome with 160,000 copies/1 C of HAT58 and 93,000 copies/1 C of CAT36. Fluorescent in situ hybridization (FISH) and C-banding showed that HAT58 and CAT36 associated with the interstitial and pericentromeric heterochromatin of the A. fistulosum chromosomes 5, 6, 7, and 8. FISH with HAT58 and CAT36 performed on A. cepa (2n = 2C = 16) and A. wakegi (2n = 2C = 16), a natural allodiploid hybrid between A. fistulosum and A. cepa, revealed that these repeats are species specific and produced specific hybridization patterns only on A. fistulosum chromosomes. Thus, the markers can be used in interspecific breeding programs for monitoring of alien genetic material. We applied Non-denaturing FISH that allowed detection of the repeat bearing chromosomes within 3 h. A polymorphism of the HAT58 chromosome location was observed. This finding suggests that the rapid evolution of the HAT58 repeat is still ongoing.


Assuntos
Allium/genética , Cromossomos de Plantas , Sequências de Repetição em Tandem/genética , Bandeamento Cromossômico , Clonagem Molecular , Genes de Plantas , Heterocromatina/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microscopia de Fluorescência , Hibridização de Ácido Nucleico , Sondas de Oligonucleotídeos/genética , Ploidias , Reação em Cadeia da Polimerase , Polimorfismo Genético , Análise de Sequência de DNA
13.
BMC Genet ; 16: 74, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26134672

RESUMO

BACKGROUND: Rosaceae is a family containing many economically important fruit and ornamental species. Although fluorescence in situ hybridization (FISH)-based physical mapping of plant genomes is a valuable tool for map-based cloning, comparative genomics and evolutionary studies, no studies using high resolution physical mapping have been performed in this family. Previously we proved that physical mapping of single-copy genes as small as 1.1 kb is possible on mitotic metaphase chromosomes of Rosa wichurana using Tyramide-FISH. In this study we aimed to further improve the physical map of Rosa wichurana by applying high resolution FISH to pachytene chromosomes. RESULTS: Using high resolution Tyramide-FISH and multicolor Tyramide-FISH, 7 genes (1.7-3 kb) were successfully mapped on pachytene chromosomes 4 and 7 of Rosa wichurana. Additionally, by using multicolor Tyramide-FISH three closely located genes were simultaneously visualized on chromosome 7. A detailed map of heterochromatine/euchromatine patterns of chromosome 4 and 7 was developed with indication of the physical position of these 7 genes. Comparison of the gene order between Rosa wichurana and Fragaria vesca revealed a poor collinearity for chromosome 7, but a perfect collinearity for chromosome 4. CONCLUSIONS: High resolution physical mapping of short probes on pachytene chromosomes of Rosa wichurana was successfully performed for the first time. Application of Tyramide-FISH on pachytene chromosomes allowed the mapping resolution to be increased up to 20 times compared to mitotic metaphase chromosomes. High resolution Tyramide-FISH and multicolor Tyramide-FISH might become useful tools for further physical mapping of single-copy genes and for the integration of physical and genetic maps of Rosa wichurana and other members of the Rosaceae.


Assuntos
Cromossomos de Plantas , Estágio Paquíteno , Mapeamento Físico do Cromossomo , Rosa/genética , Hibridização in Situ Fluorescente/métodos
14.
Plant Methods ; 20(1): 122, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39135113

RESUMO

Virus-Induced Gene Silencing (VIGS) is a versatile tool in plant science, yet its application to non-model species like sunflower demands extensive optimization due to transformation challenges. In this study, we aimed to elucidate the factors that significantly affect the efficiency of Agrobacterium-VIGS in sunflowers. After testing a number of approaches, we concluded that the seed vacuum technique followed by 6 h of co-cultivation produced the most efficient VIGS results. Genotype-dependency analysis revealed varying infection percentages (62-91%) and silencing symptom spreading in different sunflower genotypes. Additionally, we explored the mobility of tobacco rattle virus (TRV) and phenotypic silencing manifestation (photo-bleaching) across different tissues and regions of VIGS-infected sunflower plants. We showed the presence of TRV is not necessarily limited to tissues with observable silencing events. Finally, time-lapse observation demonstrated a more active spreading of the photo-bleached spots in young tissues compared to mature ones. This study not only offers a robust VIGS protocol for sunflowers but also provides valuable insights into genotype-dependent responses and the dynamic nature of silencing events, shedding light on TRV mobility across different plant tissues.

15.
Plants (Basel) ; 12(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37299157

RESUMO

Extrachromosomal circular DNAs (eccDNAs) are enigmatic DNA molecules that have been detected in a range of organisms. In plants, eccDNAs have various genomic origins and may be derived from transposable elements. The structures of individual eccDNA molecules and their dynamics in response to stress are poorly understood. In this study, we showed that nanopore sequencing is a useful tool for the detection and structural analysis of eccDNA molecules. Applying nanopore sequencing to the eccDNA molecules of epigenetically stressed Arabidopsis plants grown under various stress treatments (heat, abscisic acid, and flagellin), we showed that TE-derived eccDNA quantity and structure vary dramatically between individual TEs. Epigenetic stress alone did not cause eccDNA up-regulation, whereas its combination with heat stress triggered the generation of full-length and various truncated eccDNAs of the ONSEN element. We showed that the ratio between full-length and truncated eccDNAs is TE- and condition-dependent. Our work paves the way for further elucidation of the structural features of eccDNAs and their connections with various biological processes, such as eccDNA transcription and eccDNA-mediated TE silencing.

16.
Plants (Basel) ; 11(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015406

RESUMO

High-copy tandemly organized repeats (TRs), or satellite DNA, is an important but still enigmatic component of eukaryotic genomes. TRs comprise arrays of multi-copy and highly similar tandem repeats, which makes the elucidation of TRs a very challenging task. Oxford Nanopore sequencing data provide a valuable source of information on TR organization at the single molecule level. However, bioinformatics tools for de novo identification of TRs in raw Nanopore data have not been reported so far. We developed NanoTRF, a new python pipeline for TR repeat identification, characterization and consensus monomer sequence assembly. This new pipeline requires only a raw Nanopore read file from low-depth (<1×) genome sequencing. The program generates an informative html report and figures on TR genome abundance, monomer sequence and monomer length. In addition, NanoTRF performs annotation of transposable elements (TEs) sequences within or near satDNA arrays, and the information can be used to elucidate how TR−TE co-evolve in the genome. Moreover, we validated by FISH that the NanoTRF report is useful for the evaluation of TR chromosome organization­clustered or dispersed. Our findings showed that NanoTRF is a robust method for the de novo identification of satellite repeats in raw Nanopore data without prior read assembly. The obtained sequences can be used in many downstream analyses including genome assembly assistance and gap estimation, chromosome mapping and cytogenetic marker development.

17.
Plants (Basel) ; 11(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36559691

RESUMO

Transposable elements (TEs) contribute not only to genome diversity but also to transcriptome diversity in plants. To unravel the sources of LTR retrotransposon (RTE) transcripts in sunflower, we exploited a recently developed transposon activation method ('TEgenesis') along with long-read cDNA Nanopore sequencing. This approach allows for the identification of 56 RTE transcripts from different genomic loci including full-length and non-autonomous RTEs. Using the mobilome analysis, we provided a new set of expressed and transpositional active sunflower RTEs for future studies. Among them, a Ty3/Gypsy RTE called SUNTY3 exhibited ongoing transposition activity, as detected by eccDNA analysis. We showed that the sunflower genome contains a diverse set of non-autonomous RTEs encoding a single RTE protein, including the previously described TR-GAG (terminal repeat with the GAG domain) as well as new categories, TR-RT-RH, TR-RH, and TR-INT-RT. Our results demonstrate that 40% of the loci for RTE-related transcripts (nonLTR-RTEs) lack their LTR sequences and resemble conventional eucaryotic genes encoding RTE-related proteins with unknown functions. It was evident based on phylogenetic analysis that three nonLTR-RTEs encode GAG (HadGAG1-3) fused to a host protein. These HadGAG proteins have homologs found in other plant species, potentially indicating GAG domestication. Ultimately, we found that the sunflower retrotranscriptome originated from the transcription of active RTEs, non-autonomous RTEs, and gene-like RTE transcripts, including those encoding domesticated proteins.

18.
Front Plant Sci ; 12: 621954, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33597963

RESUMO

In stone fruit trees, resistance to Plum pox virus (PPV) can be achieved through the specific degradation of viral RNA by the mechanism of RNA interference (RNAi). Transgenic virus-resistant plants, however, raise serious biosafety concerns due to the insertion and expression of hairpin constructs that usually contain various selective foreign genes. Since a mature stone tree represents a combination of scion and rootstock, grafting commercial varieties onto transgenic virus-tolerant rootstocks is a possible approach to mitigate biosafety problems. The present study was aimed at answering the following question: To what extent are molecular RNAi silencing signals transmitted across graft junctions in transgrafted plum trees and how much does it affect PPV resistance in genetically modified (GM)/non-transgenic (NT) counterparts? Two combinations, NT:GM and GM:NT (scion:rootstock), were studied, with an emphasis on the first transgrafting scenario. Viral inoculation was carried out on either the scion or the rootstock. The interspecific rootstock "Elita" [(Prunus pumila L. × P. salicina Lindl.) × (P. cerasifera Ehrh.)] was combined with cv. "Startovaya" (Prunus domestica L.) as a scion. Transgenic plum lines of both cultivars were transformed with a PPV-coat protein (CP)-derived intron-separate hairpin-RNA construct and displayed substantial viral resistance. High-throughput sequence data of small RNA (sRNA) pools indicated that the accumulation of construct-specific small interfering RNA (siRNA) in transgenic plum rootstock reached over 2%. The elevated siRNA level enabled the resistance to PPV and blocked the movement of the virus through the GM tissues into the NT partner when the transgenic tissues were inoculated. At the same time, the mobile siRNA signal was not moved from the GM rootstock to the target NT tissue to a level sufficient to trigger silencing of PPV transcripts and provide reliable viral resistance. The lack of mobility of transgene-derived siRNA molecules was accompanied by the transfer of various endogenous rootstock-specific sRNAs into the NT scion, indicating the exceptional transitivity failure of the studied RNAi signal. The results presented here indicate that transgrafting in woody fruit trees remains an unpredictable practice and needs further in-depth examination to deliver molecular silencing signals.

19.
Plants (Basel) ; 11(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35009008

RESUMO

Sequencing and epigenetic profiling of target genes in plants are important tasks with various applications ranging from marker design for plant breeding to the study of gene expression regulation. This is particularly interesting for plants with big genome size for which whole-genome sequencing can be time-consuming and costly. In this study, we asked whether recently proposed Cas9-targeted nanopore sequencing (nCATS) is efficient for target gene sequencing for plant species with big genome size. We applied nCATS to sequence the full-length glutenin genes (Glu-1Ax, Glu-1Bx and Glu-1By) and their promoters in hexaploid triticale (X Triticosecale, AABBRR, genome size is 24 Gb). We showed that while the target gene enrichment per se was quite high for the three glutenin genes (up to 645×), the sequencing depth that was achieved from two MinION flowcells was relatively low (5-17×). However, this sequencing depth was sufficient for various tasks including detection of InDels and single-nucleotide variations (SNPs), read phasing and methylation profiling. Using nCATS, we uncovered SNP and InDel variation of full-length glutenin genes providing useful information for marker design and deciphering of variation of individual Glu-1By alleles. Moreover, we demonstrated that glutenin genes possess a 'gene-body' methylation epigenetic profile with hypermethylated CDS part and hypomethylated promoter region. The obtained information raised an interesting question on the role of gene-body methylation in glutenin gene expression regulation. Taken together, our work disclosures the potential of the nCATS approach for sequencing of target genes in plants with big genome size.

20.
Front Plant Sci ; 12: 612382, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815435

RESUMO

Common buckwheat (Fagopyrum esculentum) is an important non-cereal grain crop and a prospective component of functional food. Despite this, the genomic resources for this species and for the whole family Polygonaceae, to which it belongs, are scarce. Here, we report the assembly of the buckwheat genome using long-read technology and a high-resolution expression atlas including 46 organs and developmental stages. We found that the buckwheat genome has an extremely high content of transposable elements, including several classes of recently (0.5-1 Mya) multiplied TEs ("transposon burst") and gradually accumulated TEs. The difference in TE content is a major factor contributing to the three-fold increase in the genome size of F. esculentum compared with its sister species F. tataricum. Moreover, we detected the differences in TE content between the wild ancestral subspecies F. esculentum ssp. ancestrale and buckwheat cultivars, suggesting that TE activity accompanied buckwheat domestication. Expression profiling allowed us to test a hypothesis about the genetic control of petaloidy of tepals in buckwheat. We showed that it is not mediated by B-class gene activity, in contrast to the prediction from the ABC model. Based on a survey of expression profiles and phylogenetic analysis, we identified the MYB family transcription factor gene tr_18111 as a potential candidate for the determination of conical cells in buckwheat petaloid tepals. The information on expression patterns has been integrated into the publicly available database TraVA: http://travadb.org/browse/Species=Fesc/. The improved genome assembly and transcriptomic resources will enable research on buckwheat, including practical applications.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa