Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Chem Biol ; 8(8): 1730-6, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23675775

RESUMO

The principal finding of this study is that two drugs, alverine and benfluorex, used in vastly different clinical settings, activated the nuclear receptor transcription factor HNF4α. Both were hits in a high-throughput screen for compounds that reversed the inhibitory effect of the fatty acid palmitate on human insulin promoter activity. Alverine is used in the treatment of irritable bowel syndrome, while benfluorex (Mediator) was used to treat hyperlipidemia and type II diabetes. Benfluorex was withdrawn from the market recently because of serious cardiovascular side effects related to fenfluramine-like activity. Strikingly, alverine and benfluorex have a previously unrecognized structural similarity, consistent with a common mechanism of action. Gene expression and biochemical studies revealed that they both activate HNF4α. This novel mechanism of action should lead to a reinterpretation of previous studies with these drugs and suggests a path toward the development of therapies for diseases such as inflammatory bowel and diabetes that may respond to HNF4α activators.


Assuntos
Fenfluramina/análogos & derivados , Fator 4 Nuclear de Hepatócito/metabolismo , Propilaminas/química , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Fenfluramina/química , Fenfluramina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Modelos Moleculares , Estrutura Molecular , Propilaminas/farmacologia , Ligação Proteica/efeitos dos fármacos
2.
Chem Biol ; 19(7): 806-18, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22840769

RESUMO

Hepatocyte nuclear factor (HNF)4α is a central regulator of gene expression in cell types that play a critical role in metabolic homeostasis, including hepatocytes, enterocytes, and pancreatic ß cells. Although fatty acids were found to occupy the HNF4α ligand-binding pocket and were proposed to act as ligands, there is controversy about both the nature of HNF4α ligands as well as the physiological role of the binding. Here, we report the discovery of potent synthetic HNF4α antagonists through a high-throughput screen for effectors of the human insulin promoter. These molecules bound to HNF4α with high affinity and modulated the expression of known HNF4α target genes. Notably, they were found to be selectively cytotoxic to cancer cell lines in vitro and in vivo, although in vivo potency was limited by suboptimal pharmacokinetic properties. The discovery of bioactive modulators for HNF4α raises the possibility that diseases involving HNF4α, such as diabetes and cancer, might be amenable to pharmacologic intervention by modulation of HNF4α activity.


Assuntos
Benzimidazóis/farmacologia , Descoberta de Drogas , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Ensaios de Triagem em Larga Escala , Insulina/genética , Regiões Promotoras Genéticas/genética , Sulfonamidas/farmacologia , Benzimidazóis/química , Relação Dose-Resposta a Droga , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , PPAR gama/agonistas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Relação Estrutura-Atividade , Sulfonamidas/química
3.
Mol Cancer Res ; 9(6): 782-90, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21498546

RESUMO

Pancreatic ductal adenocarcinoma (PDA) has a 5-year survival rate of less than 5%, and therapeutic advances have been hampered by gaps in our understanding of cell-cycle control in the adult pancreas. Previously, we reported that basic Helix-Loop-Helix (bHLH) transcription factors regulate cell fate specification in the pancreas. In the present study, we found that a repressor of bHLH activity, Id3, was profoundly upregulated in ductal cells in murine models of pancreatitis and pancreatic intraepithelial neoplasia (PanIN). Id3 was also pervasively expressed in neoplastic lesions in human PDA in situ. We hypothesized that an imbalance in bHLH versus Id activity controlled cell growth in PDA. Consistent with this model, cell-cycle progression in PDA cells was impeded by siRNA-mediated depletion of Id3 or overexpression of the bHLH protein E47. The precursors of human PDA are normally quiescent duct cells which do not proliferate in response to high serum or growth factors. The finding that Id3 was expressed in pancreatitis, as well as PDA, suggested that Id3 might induce cell-cycle entry in ducts. To test this hypothesis, primary human pancreatic duct cells were transduced with an adenovirus-expressing Id3. Remarkably, Id3 expression alone was sufficient to trigger efficient cell-cycle entry, as manifested by expression of the proliferation markers Ki67, phospho-cyclin E, and phospho-histone H3. Collectively, the data establish dysregulation of the Id/bHLH axis as an early and sustained feature of ductal pathogenesis and mark this axis as a potential therapeutic target for intervention in pancreatitis and PDA.


Assuntos
Carcinoma Ductal Pancreático/metabolismo , Proteínas Inibidoras de Diferenciação/metabolismo , Proteínas de Neoplasias/metabolismo , Ductos Pancreáticos/metabolismo , Neoplasias Pancreáticas/metabolismo , Fator 3 de Transcrição/metabolismo , Animais , Carcinoma Ductal Pancreático/patologia , Ciclo Celular/genética , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ductos Pancreáticos/patologia , Neoplasias Pancreáticas/patologia , Pancreatite/metabolismo
4.
J Biomol Screen ; 15(6): 663-70, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20547533

RESUMO

A number of diabetogenic stimuli interact to influence insulin promoter activity, making it an attractive target for both mechanistic studies and therapeutic interventions. High-throughput screening (HTS) for insulin promoter modulators has the potential to reveal novel inputs into the control of that central element of the pancreatic beta-cell. A cell line from human islets in which the expression of insulin and other beta-cell-restricted genes are modulated by an inducible form of the bHLH transcription factor E47 was developed. This cell line, T6PNE, was adapted for HTS by transduction with a vector expressing green fluorescent protein under the control of the human insulin promoter. The resulting cell line was screened against a library of known drugs for those that increase insulin promoter activity. Members of the phenothiazine class of neuroleptics increased insulin gene expression upon short-term exposure. Chronic treatment, however, resulted in suppression of insulin promoter activity, consistent with the effect of phenothiazines observed clinically to induce diabetes in chronically treated patients. In addition to providing insights into previously unrecognized targets and mechanisms of action of phenothiazines, the novel cell line described here provides a broadly applicable platform for mining new molecular drug targets and central regulators of beta-cell differentiated function.


Assuntos
Antipsicóticos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Insulina/genética , Fenotiazinas/farmacologia , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p57/genética , Inibidor de Quinase Dependente de Ciclina p57/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Relação Estrutura-Atividade , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição
5.
ChemMedChem ; 4(7): 1106-19, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19378296

RESUMO

PPARgamma agonist DIM-Ph-4-CF(3), a template for RXRalpha agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl] acrylic acid: DIM-Ph-CF(3) is reported to inhibit cancer growth independent of PPARgamma and to interact with NR4A1. As both receptors dimerize with RXR, and natural PPARgamma ligands activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. It displaces 9-cis-retinoic acid from RXRalpha but does not activate RXRalpha. Structure-based direct design led to an RXRalpha agonist.1-Di(1H-indol-3-yl)methyl-4-trifluoromethylbenzene (DIM-Ph-4-CF(3)) is reported to inhibit cancer cell growth and to act as a transcriptional agonist of peroxisome proliferator-activated receptor gamma (PPARgamma) and nuclear receptor 4A subfamily member 1 (NR4A1). In addition, DIM-Ph-4-CF(3) exerts anticancer effects independent of these receptors because PPARgamma antagonists do not block its inhibition of cell growth, and the small pocket in the NR4A1 crystal structure suggests no ligand can bind. Because PPARgamma and NR4A1 heterodimerize with retinoid X receptor (RXR), and several PPARgamma ligands transcriptionally activate RXR, DIM-Ph-4-CF(3) was investigated as an RXR ligand. DIM-Ph-4-CF(3) displaces 9-cis-retinoic acid from RXRalpha but does not transactivate RXRalpha. Structure-based design using DIM-Ph-4-CF(3) as a template led to the RXRalpha transcriptional agonist (E)-3-[5-di(1-methyl-1H-indol-3-yl)methyl-2-thienyl]acrylic acid. Its docked pose in the RXRalpha ligand binding domain suggests that binding is stabilized by interactions of its carboxylate group with arginine 316, its indoles with cysteines 269 and 432, and its 1-methyl groups with hydrophobic residues lining the binding pocket. As is expected of a selective activator of RXRalpha, but not of RARs and PPARgamma, this RXRalpha agonist, unlike DIM-Ph-4-CF(3), does not appreciably decrease cancer cell growth or induce apoptosis at pharmacologically relevant concentrations.


Assuntos
Fluorbenzenos/química , PPAR gama/metabolismo , Receptores X de Retinoides/metabolismo , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Simulação por Computador , Proteínas de Ligação a DNA/metabolismo , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Fluorbenzenos/síntese química , Fluorbenzenos/farmacologia , Humanos , Ligantes , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , PPAR gama/agonistas , Receptores de Esteroides/metabolismo , Receptores X de Retinoides/agonistas
6.
Anal Chem ; 77(17): 5453-9, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16131052

RESUMO

Nanoparticles and microparticles have many potential biomedical applications ranging from imaging to drug delivery. Therefore, in vitro systems that can analyze and optimize the interaction of such particles with cells may be beneficial. Here, we report a microfluidic system that can be used to study these interactions. As a model system, we evaluated the interaction of polymeric nanoparticles and microparticles and similar particles conjugated to aptamers that recognize the transmembrane prostate specific membrane antigen (PSMA), with cells seeded in microchannels. The binding of particles to cells that expressed or did not express the PSMA (LNCaP or PC3, respectively) were evaluated with respect to changes in fluid shear stress, PSMA expression on target cells, and particle size. Nanoparticle-aptamer bioconjugates selectively adhered to LNCaP but not PC3 cells at static and low shear (<1 dyn/cm2) but not higher shear (approximately 4.5 dyn/cm2) conditions. Control nanoparticles and microparticles lacking aptamers and microparticle-aptamer bioconjugates did not adhere to LNCaP cells, even under very low shear conditions (approximately 0.28 dyn/cm2). These results demonstrate that the interaction of particles with cells can be studied under controlled conditions, which may aid in the engineering of desired particle characteristics. The scalability, low cost, reproducibility, and high-throughput capability of this technology is potentially beneficial to examining and optimizing a wide array of cell-particle systems prior to in vivo experiments.


Assuntos
Microfluídica/instrumentação , Microfluídica/métodos , Nanopartículas/química , Técnicas Biossensoriais , Adesão Celular , Linhagem Celular Tumoral , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa