Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Exp Biol ; 222(Pt 12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097605

RESUMO

Temperature is an important environmental factor influencing fish physiology that varies both spatially and temporally in ecosystems. In small north temperate zone lakes, cold water piscivores rely on nearshore prey; however, this region exceeds the optimal temperature of the foraging species during summer. To cope, piscivores make short excursions into the nearshore to feed and return to cold water to digest their meal, but the physiological impacts of these repeated acute exposures to warm water are not well understood. We exposed juvenile lake trout (Salvelinus namaycush) to treatments where they were held at ∼10°C and exposed to either 17 or 22°C for 5-10 min daily for 53 days mimicking warm-water forays. Control fish, held at an average temperature of ∼10°C but not exposed to thermal variation, consumed more food and grew slightly faster than heat challenged fish, with no clear differences in body condition, hepatosomatic index, ventricle mass, or muscle concentrations of lactate dehydrogenase and cytochrome c oxidase. Aerobic metabolic rates measured at 10°C indicated that standard metabolic rates (SMR) were similar among treatments; however, fish that were repeatedly exposed to 17°C had higher maximum metabolic rates (MMR) and aerobic scopes (AS) than control fish and those repeatedly exposed to 22°C. There were no differences in MMR or AS between fish exposed to 22°C and control fish. These results suggest that although SMR of fish are robust to repeated forays into warmer environments, MMR displays plasticity, allowing fish to be less constrained aerobically in cold water after briefly occupying warmer waters.


Assuntos
Temperatura Alta , Truta/crescimento & desenvolvimento , Truta/metabolismo , Animais , Composição Corporal , Comportamento Alimentar
2.
Conserv Physiol ; 5(1): cox048, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30245823

RESUMO

By understanding range-wide intraspecific variation in metabolic rate we can better understand how organisms have adapted to their environment. However, methods to quantify metabolic rate of fishes from remote areas or those that cannot be brought back to the laboratory because of imperilment status are lacking. Consequently, practical and reliable field-based methods are needed. To address this need, we developed a simple yet robust intermittent-flow respirometry system, adapted from a design commonly used in the laboratory that is readily suited for field use. Standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS) estimates were obtained from juvenile lake trout (Salvelinus namaycush) and brook trout (Salvelinus fontinalis) using both field- and laboratory-based systems. Whole-fish SMR, MMR and AS estimates from the field and laboratory methods did not differ from one another (ANCOVA and LMM: all P > 0.05) for either species and were comparable to estimates previously reported. Our field setup is a simpler system than the conventional laboratory-based system that requires less power and equipment to operate, yet still offers users the ability to: (1) acclimate fish to the respirometry chamber; (2) measure oxygen consumption during a shorter period (1 h), which yield metabolic rate estimates comparable to systems that take measurements over longer periods; and (3) take repeated oxygen consumption measurements with manual user-defined flush and measurement phase routines. Developing practical and reliable field respirometry methods, as demonstrated here, is important if we wish to improve our ability to predict how imperiled species will respond to changes in their environment. Such knowledge is critical for informing conservation strategies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa