Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 36(13): 3633-3644, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32176500

RESUMO

This study investigated the wettability of poly(vinylidene fluoride) (PVDF) surfaces by a good pure solvent and a good solvent/nonsolvent mixture based on all-atom molecular dynamics (MD) simulations. In particular, droplets of pure N-methyl-2-pyrrolidone (NMP) and of mixed NMP/water molecules were brought into contact with both crystalline and amorphous PVDF surfaces. The contact angles of the macroscopic droplets on the crystalline surface were higher and those on the amorphous surface were lower than the experimental values. As the PVDF sheet surface is a mixture of crystalline and amorphous phases, the experimental contact angles being between those on crystalline and amorphous surfaces is reasonable. On the crystalline surface, the decrease in the contact angle with increasing NMP concentration in the droplets can be explained by the increase in the NMP density near the solid-liquid interface. On the amorphous surface, however, the contact angle is strongly affected by the swelling of PVDF by the mixed droplets at high NMP concentrations. The solvation free energy of PVDF in NMP is greater than that in water, suggesting that this may be a driving force of the swelling of the amorphous PVDF. Furthermore, when the Cassie equation for mixed crystalline and amorphous surfaces was assumed, the calculated contact angle corresponded well with the experimental value.

2.
J Chem Phys ; 150(18): 184505, 2019 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-31091903

RESUMO

The change in the thermodynamics when adding water in poly(vinylidene fluoride) (PVDF)/N-methyl-2-pyrrolidone (NMP) solution is studied from all atom molecular dynamics (MD) simulations. This is done by estimating the free energy of mixing of PVDF/NMP solution with increasing volume fraction of water (ϕw) using an appropriately chosen thermodynamic cycle and the Bennett acceptance ratio method. The MD calculations predict the thermodynamic phase separation point of water/NMP/PVDF to be at ϕw = 0.08, in close agreement with the experimental cloud point measurement (ϕw = 0.05). Examining the enthalpic and entropic components of the free energy of mixing reveals that at low concentrations of water, the enthalpy term has the most significant contribution to the miscibility of the ternary system, whereas at higher concentrations of water, the entropy term dominates. Finally, the free energy of mixing was compared with the Flory-Huggins (FH) free energy of mixing by computing the concentration-dependent interaction parameters from MD simulations. The FH model inadequately predicted the miscibility of the PVDF solution, mainly due to its negligence of the excess entropy of mixing.

3.
Langmuir ; 34(40): 12214-12223, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30188736

RESUMO

The present study investigates the effect of microscopic structure on the wettability of poly(vinylidene fluoride) (PVDF) surfaces using all-atom molecular dynamics simulations of water droplets brought into contact with both crystal and amorphous PVDF surfaces. For each case, computations were performed using five different droplet diameters, and the corresponding water droplet contact angles θ were obtained. Using the fact that the cosine of these contact angles for both surfaces are inversely proportional to the radius of the droplet contact surface ( rdr( Z0)), the contact angle θ∞ of the macroscopic water droplet was obtained by extrapolating cos θ to 1/ rdr( Z0) = 0. The estimated values of θ∞ on the crystal and amorphous surfaces were 96° and 86°, respectively, showing that the amorphous surface is less hydrophobic than the crystal surface. The contact angle of the crystalline/amorphous mixed surface was estimated using the Cassie equation to be 91°. This value agrees well with experimental measurement of the water contact angle on the PVDF film. Furthermore, the interaction energy, interface structure, and electrostatic potential were analyzed to clarify the reason for the lower hydrophobicity of the amorphous surface. This surface interacts more favorably with water than the crystal surface. Such an interaction reduces the excess free energy (interfacial tension) at the PVDF and water interface and makes the amorphous surface less hydrophobic. The amorphous interfacial region contains more water molecules than the crystal one, and water molecules are oriented toward the PVDF. This interface structure makes water strongly interact with the PVDF.

4.
J Chem Phys ; 144(22): 224701, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-27306018

RESUMO

To obtain the radial (normal) and lateral (transverse) components of the local pressure tensor, PN(R) and PT(R), respectively, and the interfacial tension of micelles, molecular dynamics (MD) calculations were performed for spherical sodium dodecyl sulfate (SDS) micelles. The local pressure tensor was calculated as a function of radial distance R using the Irving-Kirkwood formula. Similar MD calculations were also carried out for an n-dodecane droplet in water to compare the differences in the local pressure and interfacial tension values with those of the micelles. The calculated interfacial tensions were 20 ± 5 and 44 ± 10 mN/m for the SDS micelles and dodecane droplets, respectively. The excess free energies due to the interfacial tension were 340 and 1331 kJ/mol for the SDS micelle and dodecane droplet, respectively. The micelles are stabilized by 991 kJ/mol by covering their hydrophobic cores with hydrophilic groups. The dodecane droplet has a large interfacial tension caused by the zero or positive values of PN(R) - PT(R) at all values of R. In contrast, the small interfacial tension in the SDS micelles comes from the negative PN(R) - PT(R) values over a wide range of R. The pressure difference between the inside and outside of the oil droplet and its interfacial tension well satisfies the Laplace equation. However, the hydrophobic core of the SDS micelle is quite different from the liquid alkane, and the SDS micelles do not follow Laplace's picture. Decomposing the interfacial tension into contributions from various interactions, it is found that those between charged and polar groups dominate the interfacial tension of the SDS micelles. The positive electrostatic potential (1.3 V) on the micelle surface and the negative potential (-0.15 V) on the oil droplet contribute to the interfacial tensions by 19 and 0.5 mN/m, respectively. Thus, the interfacial tension of the SDS micelles is produced by electrostatic interactions, in contrast to the dodecane droplet.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa