Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Nature ; 622(7981): 188-194, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37704723

RESUMO

Inflammasome sensors detect pathogen- and danger-associated molecular patterns and promote inflammation and pyroptosis1. NLRP1 was the first inflammasome sensor to be described, and its hyperactivation is linked to autoinflammatory disease and cancer2-6. However, the mechanism underlying the activation and regulation of NLRP1 has not been clearly elucidated4,7,8. Here we identify ubiquitously expressed endogenous thioredoxin (TRX) as a binder of NLRP1 and a suppressor of the NLRP1 inflammasome. The cryo-electron microscopy structure of human NLRP1 shows NLRP1 bound to Spodoptera frugiperda TRX. Mutagenesis studies of NLRP1 and human TRX show that TRX in the oxidized form binds to the nucleotide-binding domain subdomain of NLRP1. This observation highlights the crucial role of redox-active cysteines of TRX in NLRP1 binding. Cellular assays reveal that TRX suppresses NLRP1 inflammasome activation and thus negatively regulates NLRP1. Our data identify the TRX system as an intrinsic checkpoint for innate immunity and provide opportunities for future therapeutic intervention in NLRP1 inflammasome activation targeting this system.


Assuntos
Inflamassomos , Proteínas NLR , Tiorredoxinas , Humanos , Microscopia Crioeletrônica , Inflamassomos/metabolismo , Proteínas NLR/antagonistas & inibidores , Proteínas NLR/química , Proteínas NLR/metabolismo , Proteínas NLR/ultraestrutura , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Spodoptera , Proteínas de Insetos , Oxirredução , Cisteína/metabolismo , Imunidade Inata
2.
Inflamm Res ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907167

RESUMO

BACKGROUND: Senescence is a cellular aging-related process triggered by different stresses and characterized by the secretion of various inflammatory factors referred to as senescence-associated secretory phenotype (SASP), some of which are produced by the NLRP3 inflammasome. Here, we present evidence that the NLRP1 inflammasome is a DNA damage sensor and a key mediator of senescence. METHODS: Senescence was induced in fibroblasts in vitro and in mice. Cellular senescence was assessed by Western blot analysis of several proteins, including p16, p21, p53, and SASP factors, released in the culture media or serum. Inflammasome components, including NLRP1, NLRP3 and GSDMD were knocked out or silenced using siRNAs. RESULTS: In vitro and in vivo results suggest that the NLRP1 inflammasome promotes senescence by regulating the expression of p16, p21, p53, and SASP factors in a Gasdermin D (GSDMD)-dependent manner. Mechanistically, the NLRP1 inflammasome is activated in response to genomic damage detected by the cytosolic DNA sensor cGMP-AMP (cGAMP) synthase (cGAS). CONCLUSION: Our findings show that NLRP1 is a cGAS-dependent DNA damage sensor during senescence and a mediator of SASP release through GSDMD. This study advances the knowledge on the biology of the NLRP1 inflammasome and highlights this pathway as a potential pharmcological target to modulate senescence.

3.
J Immunol ; 207(12): 3098-3106, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34799426

RESUMO

Rodent mast cells are classified into two major subsets, mucosal mast cells (MMCs) and connective tissue mast cells. MMCs arise from mast cell progenitors that are mobilized from the bone marrow to mucosal tissues in response to allergic inflammation or helminth infection. TGF-ß is known as an inducer of MMC differentiation in mucosal tissues, but we have previously found that Notch receptor-mediated signaling also leads to the differentiation. Here, we examined the relationship between Notch and TGF-ß signaling in MMC differentiation using mouse bone marrow-derived mast cells (BMMCs). We found that the coexistence of Notch and TGF-ß signaling markedly upregulates the expression of MMC markers, mouse mast cell protease (mMCP)-1, mMCP-2, and αE integrin/CD103, more than Notch or TGF-ß signaling alone, and that their signals act interdependently to induce these marker expressions. Notch and TGF-ß-mediated transcription of MMC marker genes were both dependent on the TGF-ß signaling transducer SMAD4. In addition, we also found that Notch signaling markedly upregulated mMCP-1 and mMCP-2 expression levels through epigenetic deregulation of the promoter regions of these genes, but did not affect the promoter of the CD103-encoding gene. Moreover, forced expression of the constitutively active Notch2 intracellular domain in BMMCs showed that Notch signaling promotes the nuclear localization of SMADs 3 and 4 and causes SMAD4-dependent gene transcription. These findings indicate that Notch and TGF-ß signaling play interdependent roles in inducing the differentiation and maturation of MMCs. These roles may contribute to the rapid expansion of the number of MMCs during allergic mucosal inflammation.


Assuntos
Mastócitos , Fator de Crescimento Transformador beta , Animais , Expressão Gênica , Inflamação/metabolismo , Mastócitos/metabolismo , Camundongos , Mucosa , Fator de Crescimento Transformador beta/metabolismo
4.
J Allergy Clin Immunol ; 147(3): 1063-1076.e9, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32717254

RESUMO

BACKGROUND: Oral immunotherapy (OIT) aims to establish desensitization and sustained unresponsiveness (SU) in patients with food allergy by ingestion of gradually increasing doses of specific food allergens. However, little is known about the mechanisms by which OIT induces SU to specific allergens. OBJECTIVES: We investigated the role of Notch signaling, which controls cell fate decisions in many types of immune cells in the induction of SU by OIT treatment. METHODS: Two types of mouse models, ovalbumin-induced food allergy and OIT, were generated. To elucidate the role of Notch signaling in OIT-induced SU, mice were intraperitoneally injected with the Notch signaling inhibitor N-[(3,5-difluorophenyl)acetyl]-l-alanyl-2-phenylglycine-1,1-dimethylethyl ester during the OIT treatment period. RESULTS: Ovalbumin-sensitized mice were desensitized and also had SU induced by OIT treatment, whereas repeated challenges with ovalbumin caused the development of severe allergic reactions in ovalbumin-sensitized mice. Administration of N-[(3,5-difluorophenyl)acetyl]-l-alanyl-2-phenylglycine-1,1-dimethylethyl ester to mice during the OIT treatment period inhibited the establishment of SU to ovalbumin but did not affect the induction of desensitization. OIT induced a systemic expansion of IL-10-producing CD4+ T cells, including TH2 cells, and myeloid-derived suppressor cells (MDSCs), particularly the monocytic MDSC subpopulation. Inhibition of Notch signaling prevented the OIT-induced expansion of those cells. In vitro cultures of bone marrow cells showed that Notch signaling directly promoted the generation of monocytic MDSCs. In addition, the contribution of MDSCs to OIT-induced SU was confirmed by MDSC depletion with the anti-Gr1 antibody. CONCLUSION: Notch signaling contributes to the establishment of SU induced by OIT through systemic expansion of immunosuppressive cells, such as IL-10-producing CD4+ T cells and MDSCs.


Assuntos
Dessensibilização Imunológica/métodos , Hipersensibilidade Alimentar/imunologia , Células Supressoras Mieloides/imunologia , Receptores Notch/metabolismo , Células Th2/imunologia , Administração Oral , Alérgenos/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Hipersensibilidade Alimentar/terapia , Humanos , Tolerância Imunológica , Interleucina-10/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Transdução de Sinais
5.
Immunity ; 37(5): 827-39, 2012 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-23123064

RESUMO

Mast cells (MCs) are key effector cells in allergic reactions. However, the inhibitory mechanism that prevents excessive activation of MCs remains elusive. Here we show that leukocyte mono-immunoglobulin-like receptor 3 (LMIR3; also called CD300f) is a negative regulator of MC activation in vivo. LMIR3 deficiency exacerbated MC-dependent allergic responses in mice, including anaphylaxis, airway inflammation, and dermatitis. Both physical binding and functional reporter assays via an extracellular domain of LMIR3 showed that several extracellular lipids (including ceramide) and lipoproteins were possible ligands for LMIR3. Importantly, MCs were frequently surrounded by extracellular ceramide in vivo. Upon engagement of high-affinity immunoglobulin E receptor, extracellular ceramide-LMIR3 binding inhibited MC activation via immunoreceptor tyrosine-based inhibitory and switch motifs of LMIR3. Moreover, pretreatment with LMIR3-Fc fusion protein or antibody against either ceramide or LMIR3 interfered with this binding in vivo, thereby exacerbating passive cutaneous anaphylaxis. Thus, the interaction between extracellular ceramide and LMIR3 suppressed MC-dependent allergic responses.


Assuntos
Ceramidas/imunologia , Ceramidas/metabolismo , Hipersensibilidade/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Receptores Imunológicos/imunologia , Receptores Imunológicos/metabolismo , Anafilaxia/imunologia , Anafilaxia/metabolismo , Animais , Células Cultivadas , Dermatite/imunologia , Dermatite/metabolismo , Hipersensibilidade/metabolismo , Hipersensibilidade/patologia , Imunoglobulina E/imunologia , Imunoglobulina E/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Lipoproteínas/imunologia , Lipoproteínas/metabolismo , Mastócitos/patologia , Camundongos , Ligação Proteica/imunologia , Estrutura Terciária de Proteína , Receptores de IgE/imunologia , Receptores de IgE/metabolismo , Tirosina/imunologia , Tirosina/metabolismo
6.
J Biol Chem ; 294(17): 6659-6669, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30833330

RESUMO

IgE plays a key role in allergies by binding to allergens and then sensitizing mast cells through the Fc receptor, resulting in the secretion of proinflammatory mediators. Therefore, IgE is a major target for managing allergies. Previous studies have reported that oligomannose on IgE can be a potential target to inhibit allergic responses. However, enzymes that can modulate IgE activity are not yet known. Here, we found that the commercial receptor-destroying enzyme (RDE) (II) from Vibrio cholerae culture fluid specifically modulates IgE, but not IgG, and prevents the initiation of anaphylaxis. RDE (II)-treated IgE cannot access its binding site on bone marrow-derived mast cells, resulting in reduced release of histamine and cytokines. We also noted that RDE (II)-treated IgE could not induce passive cutaneous anaphylaxis in mouse ears. Taken together, we concluded that RDE (II) modulates the IgE structure and renders it unable to mediate allergic responses. To reveal the mechanism by which RDE (II) interferes with IgE activity, we performed lectin microarray analysis to unravel the relationship between IgE modulation and glycosylation. We observed that RDE (II) treatment significantly reduced the binding of IgE to Lycopersicon esculentum lectin, which recognizes poly-N-acetylglucosamine and poly-N-acetyllactosamine. These results suggest that RDE (II) specifically modulates branched glycans on IgE, thereby interfering with its ability to induce allergic responses. Our findings may provide a basis for the development of drugs to inhibit IgE activity in allergies.


Assuntos
Anafilaxia/prevenção & controle , Enzimas/metabolismo , Imunoglobulina E/imunologia , Vibrio cholerae/enzimologia , Anafilaxia/imunologia , Animais , Sítios de Ligação , Células da Medula Óssea/imunologia , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Mastócitos/imunologia , Camundongos , Polissacarídeos/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , Tripsina/metabolismo
7.
J Biol Chem ; 293(10): 3793-3805, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29358324

RESUMO

CD300 molecules (CD300s) belong to paired activating and inhibitory receptor families, which mediate immune responses. Human CD300e (hCD300e) is expressed in monocytes and myeloid dendritic cells and transmits an immune-activating signal by interacting with DNAX-activating protein 12 (DAP12). However, the CD300e ortholog in mice (mCD300e) is poorly characterized. Here, we found that mCD300e is also an immune-activating receptor. We found that mCD300e engagement triggers cytokine production in mCD300e-transduced bone marrow-derived mast cells (BMMCs). Loss of DAP12 and another signaling protein, FcRγ, did not affect surface expression of transduced mCD300e, but abrogated mCD300e-mediated cytokine production in the BMMCs. Co-immunoprecipitation experiments revealed that mCD300e physically interacts with both FcRγ and DAP12, suggesting that mCD300e delivers an activating signal via these two proteins. Binding and reporter assays with the mCD300e extracellular domain identified sphingomyelin as a ligand of both mCD300e and hCD300e. Notably, the binding of sphingomyelin to mCD300e stimulated cytokine production in the transduced BMMCs in an FcRγ- and DAP12-dependent manner. Flow cytometric analysis with an mCD300e-specific Ab disclosed that mCD300e expression is highly restricted to CD115+Ly-6Clow/int peripheral blood monocytes, corresponding to CD14dim/+CD16+ human nonclassical and intermediate monocytes. Loss of FcRγ or DAP12 lowered the surface expression of endogenous mCD300e in the CD115+Ly-6Clow/int monocytes. Stimulation with sphingomyelin failed to activate the CD115+Ly-6Clow/int mouse monocytes, but induced hCD300e-mediated cytokine production in the CD14dimCD16+ human monocytes. Taken together, these observations indicate that mCD300e recognizes sphingomyelin and thereby regulates nonclassical and intermediate monocyte functions through FcRγ and DAP12.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Mastócitos/metabolismo , Monócitos/metabolismo , Processamento de Proteína Pós-Traducional , Receptores de IgG/metabolismo , Receptores Imunológicos/agonistas , Esfingomielinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células da Medula Óssea/metabolismo , Linhagem Celular , Citocinas/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Ligantes , Mastócitos/citologia , Mastócitos/imunologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monócitos/citologia , Monócitos/imunologia , Mutação , Fragmentos de Peptídeos/agonistas , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Receptores de IgG/química , Receptores de IgG/genética , Receptores Imunológicos/química , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo
8.
J Biol Chem ; 292(7): 2924-2932, 2017 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-28073916

RESUMO

LPS triggers inflammatory responses; however, the negative regulation of LPS responses in vivo remains poorly understood. CD300f is an inhibitory receptor among the CD300 family of paired activating and inhibitory receptors. We have previously identified ceramide as a ligand for CD300f and shown that the binding of ceramide to CD300f inhibits IgE-mediated mast cell activation and allergic responses in mouse models. Here we identify the critical role of CD300f in inhibiting LPS-induced skin inflammation. CD300f deficiency remarkably enhanced LPS-induced skin edema and neutrophil recruitment in mice. Higher levels of factors that increase vascular permeability and of factors that induce neutrophil recruitment were detected in LPS-injected skin pouch exudates of CD300f-/- mice as compared with wild-type mice. CD300f was highly expressed in mast cells and recruited neutrophils, but not in macrophages, among skin myeloid cells. CD300f deficiency failed to influence the intrinsic migratory ability of neutrophils. Ceramide-CD300f binding suppressed the release of chemical mediators from mast cells and from neutrophils in response to LPS. Adoptive transfer experiments indicated that mast cells mediated enhanced edema in LPS-stimulated skin of CD300f-/- mice, whereas mast cells together with recruited neutrophils mediated robust neutrophil accumulation. Importantly, administering a ceramide antibody or ceramide-containing vesicles enhanced or suppressed LPS-induced skin inflammation of wild-type mice, respectively. Thus, ceramide-CD300f binding inhibits LPS-induced skin inflammation, implicating CD300f as a negative regulator of Toll-like receptor 4 (TLR4) signaling in vivo.


Assuntos
Ceramidas/metabolismo , Dermatite/prevenção & controle , Lipopolissacarídeos/toxicidade , Receptores Imunológicos/metabolismo , Animais , Quimiotaxia de Leucócito , Dermatite/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neutrófilos/imunologia , Receptores Imunológicos/genética
9.
J Allergy Clin Immunol ; 139(3): 987-996.e10, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27555456

RESUMO

BACKGROUND: Mucosal mast cells (MMCs) play a central role in the development of symptoms associated with IgE-mediated food allergy. Recently, Notch2-mediated signaling was shown to be involved in proper MMC distribution in the intestinal tract. OBJECTIVE: This study aimed to clarify the mechanism by which Notch signaling regulates MMC distribution in the intestinal mucosa. Furthermore, pharmacologic inhibition of Notch signaling was evaluated as a treatment for symptoms associated with experimental food allergy. METHODS: Bone marrow-derived mast cells generated from mice were cultured with Notch ligands, and then expression of genes associated with MMCs was measured in the cells. In addition, the effect of an inhibitor of Notch signaling on food antigen-induced allergic reactions was examined in a mouse model of food allergy. RESULTS: Notch signaling induced MMC differentiation through upregulation of expression of genes characteristic of MMCs in the presence of IL-3. Some lamina propria cells isolated from the mouse small intestine expressed Notch ligands and were able to upregulate MMC markers in bone marrow-derived mast cells through Notch signaling. In a mouse model of food allergy, administration of a Notch signaling inhibitor led to suppression of food antigen-induced hyperplasia of intestinal MMCs, resulting in alleviation of allergic diarrhea and systemic anaphylaxis. CONCLUSION: Notch signaling contributes to differentiation and accumulation of MMCs in the intestinal mucosa. Thus inhibition of Notch signaling alleviates symptoms associated with experimental food allergy. These results raise the possibility that Notch signaling in mast cells is a novel target for therapy in patients with food allergy.


Assuntos
Hipersensibilidade Alimentar/imunologia , Mucosa Intestinal/imunologia , Mastócitos/imunologia , Receptores Notch/antagonistas & inibidores , Alérgenos/imunologia , Animais , Citocinas/imunologia , Dipeptídeos/farmacologia , Dipeptídeos/uso terapêutico , Feminino , Hipersensibilidade Alimentar/tratamento farmacológico , Hipersensibilidade Alimentar/patologia , Hiperplasia/tratamento farmacológico , Hiperplasia/imunologia , Hiperplasia/patologia , Intestino Delgado/citologia , Mastócitos/patologia , Camundongos Endogâmicos BALB C , Ovalbumina/imunologia , Receptores Notch/imunologia , Transdução de Sinais/efeitos dos fármacos
11.
J Virol ; 90(1): 92-102, 2016 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468529

RESUMO

UNLABELLED: Dengue virus (DENV) is the etiological agent of the major human arboviral disease. We previously demonstrated that the TIM and TAM families of phosphatidylserine (PtdSer) receptors involved in the phagocytosis of apoptotic cells mediate DENV entry into target cells. We show here that human CD300a, a recently identified phospholipid receptor, also binds directly DENV particles and enhances viral entry. CD300a facilitates infection of the four DENV serotypes, as well as of other mosquito-borne viruses such as West Nile virus and Chikungunya virus. CD300a acts as an attachment factor that enhances DENV internalization through clathrin-mediated endocytosis. CD300a recognizes predominantly phosphatidylethanolamine (PtdEth) and to a lesser extent PtdSer associated with viral particles. Mutation of residues in the IgV domain critical for phospholipid binding abrogate CD300a-mediated enhancement of DENV infection. Finally, we show that CD300a is expressed at the surface of primary macrophages and anti-CD300a polyclonal antibodies partially inhibited DENV infection of these cells. Overall, these data indicate that CD300a is a novel DENV binding receptor that recognizes PtdEth and PtdSer present on virions and enhance infection. IMPORTANCE: Dengue disease, caused by dengue virus (DENV), has emerged as the most important mosquito-borne viral disease of humans and is a major global health concern. The molecular bases of DENV-host cell interactions during virus entry are poorly understood, hampering the discovery of new targets for antiviral intervention. We recently discovered that the TIM and TAM proteins, two receptor families involved in the phosphatidylserine (PtdSer)-dependent phagocytic removal of apoptotic cells, interact with DENV particles-associated PtdSer through a mechanism that mimics the recognition of apoptotic cells and mediate DENV infection. In this study, we show that CD300a, a novel identified phospholipid receptor, mediates DENV infection. CD300a-dependent DENV infection relies on the direct recognition of phosphatidylethanolamine and to a lesser extent PtdSer associated with viral particles. This study provides novel insights into the mechanisms that mediate DENV entry and reinforce the concept that DENV uses an apoptotic mimicry strategy for viral entry.


Assuntos
Antígenos CD/metabolismo , Vírus da Dengue/fisiologia , Interações Hospedeiro-Patógeno , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Internalização do Vírus , Linhagem Celular , Vírus Chikungunya/fisiologia , Endocitose , Humanos , Macrófagos/química , Proteínas de Membrana/análise , Fosfatidiletanolaminas/metabolismo , Fosfatidilserinas/metabolismo , Ligação Proteica , Vírus do Nilo Ocidental/fisiologia
13.
J Immunol ; 195(7): 3427-35, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26297757

RESUMO

FcεRI, which is composed of α, ß, and γ subunits, plays an important role in IgE-mediated allergic responses. TGF-ß1 has been reported to suppress FcεRI and stem cell factor receptor c-Kit expression on mast cell surfaces and to suppress mast cell activation induced by cross-linking of FcεRI. However, the molecular mechanism by which these expressions and activation are suppressed by TGF-ß1 remains unclear. In this study, we found that the expression of Ets homologous factor (Ehf), a member of the Ets family transcriptional factors, is upregulated by TGF-ß/Smad signaling in mouse bone marrow-derived mast cells (BMMCs). Forced expression of Ehf in BMMCs repressed the transcription of genes encoding FcεRIα, FcεRIß, and c-Kit, resulting in a reduction in cell surface FcεRI and c-Kit expression. Additionally, forced expression of Ehf suppressed FcεRI-mediated degranulation and cytokine production. Ehf inhibited the promoter activity of genes encoding FcεRIα, FcεRIß, and c-Kit by binding to these gene promoters. Furthermore, the mRNA levels of Gata1, Gata2, and Stat5b were lower in BMMCs stably expressing Ehf compared with control cells. Because GATA-1 and GATA-2 are positive regulators of FcεRI and c-Kit expression, decreased expression of GATAs may be also involved in the reduction of FcεRI and c-Kit expression. Decreased expression of Stat5 may contribute to the suppression of cytokine production by BMMCs. In part, mast cell response to TGF-ß1 was mimicked by forced expression of Ehf, suggesting that TGF-ß1 suppresses FcεRI and c-Kit expression and suppresses FcεRI-mediated activation through upregulation of Ehf.


Assuntos
Proteínas Proto-Oncogênicas c-kit/biossíntese , Receptores de IgE/imunologia , Fatores de Transcrição/imunologia , Fator de Crescimento Transformador beta1/metabolismo , Animais , Células da Medula Óssea , Degranulação Celular/imunologia , Células Cultivadas , Citocinas/biossíntese , Fator de Transcrição GATA1/biossíntese , Fator de Transcrição GATA1/genética , Fator de Transcrição GATA2/biossíntese , Fator de Transcrição GATA2/genética , Imunoglobulina E/imunologia , Mastócitos/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas c-kit/genética , Interferência de RNA , RNA Mensageiro/metabolismo , RNA Interferente Pequeno , Receptores de IgE/biossíntese , Fator de Transcrição STAT5/biossíntese , Fator de Transcrição STAT5/genética , Transdução de Sinais/imunologia , Proteínas Smad/metabolismo , Fatores de Transcrição/biossíntese , Transcrição Gênica/genética , Ativação Transcricional
14.
Gut ; 65(5): 777-87, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25673319

RESUMO

OBJECTIVE: Extracellular ATP mediates mast cell-dependent intestinal inflammation via P2X7 purinoceptors. We have previously shown that CD300f (also called the leucocyte mono-immunoglobulin-like receptor 3 (LMIR3)) suppresses immunoglobulin E-dependent and mast cell-dependent allergic responses by binding to ceramide. The aim of the present study was to clarify the role of ceramide-LMIR3 interaction in the development of IBD. DESIGN: The dextran sodium sulfate (DSS)-induced colitis model was used in wild-type (WT), LMIR3(-/-), mast cell-deficient Kit(W-sh/W-sh), Kit(W-sh/W-sh)LMIR3(-/-) or Kit(W-sh/W-sh) mice engrafted with WT or LMIR3(-/-) bone marrow-derived mast cells (BMMCs). The severity of colitis was determined by clinical and histological criteria. Lamina propria cell populations were assessed by flow cytometry. Production of chemical mediators from lamina propria cells was measured by real-time reverse transcription PCR. Production of chemical mediators from ATP-stimulated BMMCs in the presence or absence of ceramide was measured by ELISA. The severity of DSS-induced colitis was assessed in mice given either an Fc fusion protein containing an extracellular domain of LMIR3, and anticeramide antibody, or ceramide liposomes. RESULTS: LMIR3 deficiency exacerbated DSS-induced colitis in mice. Kit(W-sh/W-sh) mice harbouring LMIR3(-/-) mast cells exhibited more severe colitis than those harbouring WT mast cells. Ceramide-LMIR3 interaction inhibited ATP-stimulated activation of BMMCs. DSS-induced colitis was aggravated by disrupting the ceramide-LMIR3 interaction, whereas it was suppressed by treating with ceramide liposomes. CONCLUSIONS: LMIR3-deficient colonic mast cells were pivotal in the exacerbation of DSS-induced colitis in LMIR3(-/-) mice. Ceramide liposomes attenuated DSS-induced colitis by inhibiting ATP-mediated activation of colonic mast cells through ceraimide-LMIR3 binding.


Assuntos
Trifosfato de Adenosina/antagonistas & inibidores , Ceramidas/fisiologia , Colite/prevenção & controle , Mastócitos/fisiologia , Receptores Imunológicos/fisiologia , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL
15.
Blood ; 123(25): 3932-42, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24825862

RESUMO

High levels of HES1 expression are frequently found in BCR-ABL(+) chronic myelogenous leukemia in blast crisis (CML-BC). In mouse bone marrow transplantation (BMT) models, co-expression of BCR-ABL and Hes1 induces CML-BC-like disease; however, the underlying mechanism remained elusive. Here, based on gene expression analysis, we show that MMP-9 is upregulated by Hes1 in common myeloid progenitors (CMPs). Analysis of promoter activity demonstrated that Hes1 upregulated MMP-9 by activating NF-κB. Analysis of 20 samples from CML-BC patients showed that MMP-9 was highly expressed in three, with two exhibiting high levels of HES1 expression. Interestingly, MMP-9 deficiency impaired the cobblestone area-forming ability of CMPs expressing BCR-ABL and Hes1 that were in conjunction with a stromal cell layer. In addition, CMPs expressing BCR-ABL and Hes1 secreted MMP-9, promoting the release of soluble Kit-ligand (sKitL) from stromal cells, thereby enhancing proliferation of the leukemic cells. In accordance, mice transplanted with CMPs expressing BCR-ABL and Hes1 exhibited high levels of sKitL as well as MMP-9 in the serum. Importantly, MMP-9 deficiency impaired the development of CML-BC-like disease induced by BCR-ABL and Hes1 in mouse BMT models. The present results suggest that Hes1 promotes the development of CML-BC, partly through MMP-9 upregulation in leukemic cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Crise Blástica/genética , Regulação Leucêmica da Expressão Gênica , Proteínas de Homeodomínio/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Metaloproteinase 9 da Matriz/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Crise Blástica/metabolismo , Transplante de Medula Óssea/métodos , Movimento Celular/genética , Proliferação de Células , Citometria de Fluxo , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Estimativa de Kaplan-Meier , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , NF-kappa B/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais , Fatores de Transcrição HES-1 , Regulação para Cima
16.
Blood ; 121(20): 4142-55, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-23547050

RESUMO

Ecotropic viral integration site 1 (Evi1) is one of the master regulators in the development of acute myeloid leukemia (AML) and myelodysplastic syndrome. High expression of Evi1 is found in 10% of patients with AML and indicates a poor outcome. Several recent studies have indicated that Evi1 requires collaborative factors to induce AML. Therefore, the search for candidate factors that collaborate with Evi1 in leukemogenesis is one of the key issues in uncovering the mechanism of Evi1-related leukemia. Previously, we succeeded in making a mouse model of Evi1-related leukemia using a bone marrow transplantation (BMT) system. In the Evi1-induced leukemic cells, we identified frequent retroviral integrations near the CCAAT/enhancer-binding protein ß (C/EBPß) gene and overexpression of its protein. These findings imply that C/EBPß is a candidate gene that collaborates with Evi1 in leukemogenesis. Cotransduction of Evi1 and the shortest isoform of C/EBPß, liver inhibitory protein (LIP), induced AML with short latencies in a mouse BMT model. Overexpression of LIP alone also induced AML with longer latencies. However, excision of all 3 isoforms of C/EBPß (LAP*/LAP/LIP) did not inhibit the development of Evi1-induced leukemia. Therefore, isoform-specific intervention that targets LIP is required when we consider C/EBPß as a therapeutic target.


Assuntos
Transplante de Medula Óssea , Proteína beta Intensificadora de Ligação a CCAAT/fisiologia , Transformação Celular Neoplásica/genética , Proteínas de Ligação a DNA/fisiologia , Leucemia Mieloide Aguda/genética , Proto-Oncogenes/fisiologia , Fatores de Transcrição/fisiologia , Animais , Transplante de Medula Óssea/efeitos adversos , Transplante de Medula Óssea/patologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Regulação Leucêmica da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/etiologia , Leucemia Mieloide Aguda/patologia , Proteína do Locus do Complexo MDS1 e EVI1 , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/fisiologia , Proto-Oncogenes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
J Biol Chem ; 288(11): 7662-7675, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23372157

RESUMO

CD300C is highly homologous with an inhibitory receptor CD300A in an immunoglobulin-like domain among the human CD300 family of paired immune receptors. To clarify the precise expression and function of CD300C, we generated antibodies discriminating between CD300A and CD300C, which recognized a unique epitope involving amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Notably, CD300C was highly expressed in human monocytes and mast cells. Cross-linking of CD300C by its specific antibody caused cytokine/chemokine production of human monocytes and mast cells. Fc receptor γ was indispensable for both efficient surface expression and activating functions of CD300C. To identify a ligand for CD300A or CD300C, we used reporter cell lines expressing a chimera receptor harboring extracellular CD300A or CD300C and intracellular CD3ζ, in which its unknown ligand induced GFP expression. Our results indicated that phosphatidylethanolamine (PE) among the lipids tested and apoptotic cells were possible ligands for both CD300C and CD300A. PE and apoptotic cells more strongly induced GFP expression in the reporter cells through binding to extracellular CD300A as compared with CD300C. Differential recognition of PE by extracellular CD300A and CD300C depended on different amino acid residues CD300A(F56-L57) and CD300C(L63-R64). Interestingly, GFP expression induced by extracellular CD300C-PE binding in the reporter cells was dampened by co-expression of full-length CD300A, indicating the predominance of CD300A over CD300C in PE recognition/signaling. PE consistently failed to stimulate cytokine production in monocytes expressing CD300C with CD300A. In conclusion, specific engagement of CD300C led to Fc receptor γ-dependent activation of mast cells and monocytes.


Assuntos
Antígenos de Superfície/fisiologia , Regulação da Expressão Gênica , Mastócitos/metabolismo , Glicoproteínas de Membrana/fisiologia , Monócitos/metabolismo , Receptores de IgG/metabolismo , Animais , Antígenos de Superfície/metabolismo , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Células HL-60 , Humanos , Sistema Imunitário , Células Jurkat , Células K562 , Ligantes , Mastócitos/citologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/citologia , Células NIH 3T3 , Fagocitose , Ratos , Transdução de Sinais , Relação Estrutura-Atividade , Células U937
20.
J Immunol ; 189(4): 1773-9, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22772446

RESUMO

Leukocyte mono-Ig-like receptor 5 (LMIR5, also called CD300b) is an activating receptor expressed in myeloid cells. We have previously demonstrated that T cell Ig mucin 1 works as a ligand for LMIR5 in mouse ischemia/reperfusion injury of the kidneys. In this article, we show that LMIR5 is implicated in LPS-induced sepsis in mice. Notably, neutrophils constitutively released a soluble form of LMIR5 (sLMIR5) through proteolytic cleavage of surface LMIR5. Stimulation with TLR agonists augmented the release of sLMIR5. LPS administration or peritonitis induction increased serum levels of sLMIR5 in mice, which was substantially inhibited by neutrophil depletion. Thus, neutrophils were the main source of LPS-induced sLMIR5 in vivo. On the other hand, i.p. administration of LMIR5-Fc, a surrogate of sLMIR5, bound to resident macrophages (M) and stimulated transient inflammation in mice. Consistently, LMIR5-Fc induced in vitro cytokine production of peritoneal M via its unknown ligand. Interestingly, LMIR5 deficiency profoundly reduced systemic cytokine production and septic mortality in LPS-administered mice, although it did not affect in vitro cytokine production of LPS-stimulated peritoneal M. Importantly, the resistance of LMIR5-deficient mice to LPS- or peritonitis-induced septic death was decreased by LMIR5-Fc administration, implicating sLMIR5 in LPS responses in vivo. Collectively, neutrophil-derived sLMIR5 amplifies LPS-induced lethal inflammation.


Assuntos
Neutrófilos/imunologia , Receptores Imunológicos/imunologia , Sepse/imunologia , Animais , Western Blotting , Citocinas/biossíntese , Citocinas/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Macrófagos Peritoneais/imunologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Receptores Imunológicos/genética , Sepse/induzido quimicamente , Solubilidade , Transfecção
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa