Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613937

RESUMO

There are substantial differences in autonomic nervous system activation among heart (cardiac) failure (CF) patients. The effect of acute CF on autonomic function has not been well explored. The aim of our study was to assess the effect of experimental acute CF on heart rate variability (HRV). Twenty-four female pigs with a mean body weight of 45 kg were used. Acute severe CF was induced by global myocardial hypoxia. In each subject, two 5-min electrocardiogram segments were analyzed and compared: before the induction of myocardial hypoxia and >60 min after the development of severe CF. HRV was assessed by time-domain, frequency-domain and nonlinear analytic methods. The induction of acute CF led to a significant decrease in cardiac output, left ventricular ejection fraction and an increase in heart rate. The development of acute CF was associated with a significant reduction in the standard deviation of intervals between normal beats (50.8 [20.5−88.1] ms versus 5.9 [2.4−11.7] ms, p < 0.001). Uniform HRV reduction was also observed in other time-domain and major nonlinear analytic methods. Similarly, frequency-domain HRV parameters were significantly changed. Acute severe CF induced by global myocardial hypoxia is associated with a significant reduction in HRV.


Assuntos
Insuficiência Cardíaca , Isquemia Miocárdica , Feminino , Suínos , Animais , Frequência Cardíaca/fisiologia , Volume Sistólico , Função Ventricular Esquerda/fisiologia , Hipóxia
2.
BMC Pulm Med ; 21(1): 133, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33894747

RESUMO

BACKGROUND: Among the challenges for personalizing the management of mechanically ventilated patients with coronavirus disease (COVID-19)-associated acute respiratory distress syndrome (ARDS) are the effects of different positive end-expiratory pressure (PEEP) levels and body positions in regional lung mechanics. Right-left lung aeration asymmetry and poorly recruitable lungs with increased recruitability with alternating body position between supine and prone have been reported. However, real-time effects of changing body position and PEEP on regional overdistension and collapse, in individual patients, remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP and body positioning in order to reduce the mechanisms of ventilator-induced lung injury: collapse and overdistension. METHODS: We here report a series of five consecutive mechanically ventilated patients with COVID-19-associated ARDS in which sixteen decremental PEEP titrations were performed in the first days of mechanical ventilation (8 titration pairs: supine position immediately followed by 30° targeted lateral position). The choice of lateral tilt was based on X-Ray. This targeted lateral position strategy was defined by selecting the less aerated lung to be positioned up and the more aerated lung to be positioned down. For each PEEP level, global and regional collapse and overdistension maps and percentages were measured by electrical impedance tomography. Additionally, we present the incidence of lateral asymmetry in a cohort of forty-four patients. RESULTS: The targeted lateral position strategy resulted in significantly smaller amounts of overdistension and collapse when compared with the supine one: less collapse along the PEEP titration was found within the left lung in targeted lateral (P = 0.014); and less overdistension along the PEEP titration was found within the right lung in targeted lateral (P = 0.005). Regarding collapse within the right lung and overdistension within the left lung: no differences were found for position. In the cohort of forty-four patients, ventilation inequality of > 65/35% was observed in 15% of cases. CONCLUSIONS: Targeted lateral positioning with bedside personalized PEEP provided a selective attenuation of overdistension and collapse in mechanically ventilated patients with COVID-19-associated ARDS and right-left lung aeration/ventilation asymmetry. TRIAL REGISTRATION: Trial registration number: NCT04460859.


Assuntos
COVID-19/terapia , Posicionamento do Paciente/métodos , Atelectasia Pulmonar/prevenção & controle , Síndrome do Desconforto Respiratório/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/prevenção & controle , Adulto , Idoso , Idoso de 80 Anos ou mais , Impedância Elétrica , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Respiração com Pressão Positiva/métodos , Estudos Prospectivos , Atelectasia Pulmonar/terapia , Respiração Artificial/métodos , SARS-CoV-2
3.
J Transl Med ; 18(1): 75, 2020 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-32054495

RESUMO

BACKGROUND: Venoarterial extracorporeal membrane oxygenation (VA ECMO) is widely used in the treatment of circulatory failure, but repeatedly, its negative effects on the left ventricle (LV) have been observed. The purpose of this study is to assess the influence of increasing extracorporeal blood flow (EBF) on LV performance during VA ECMO therapy of decompensated chronic heart failure. METHODS: A porcine model of low-output chronic heart failure was developed by long-term fast cardiac pacing. Subsequently, under total anesthesia and artificial ventilation, VA ECMO was introduced to a total of five swine with profound signs of chronic cardiac decompensation. LV performance and organ specific parameters were recorded at different levels of EBF using a pulmonary artery catheter, a pressure-volume loop catheter positioned in the LV, and arterial flow probes on systemic arteries. RESULTS: Tachycardia-induced cardiomyopathy led to decompensated chronic heart failure with mean cardiac output of 2.9 ± 0.4 L/min, severe LV dilation, and systemic hypoperfusion. By increasing the EBF from minimal flow to 5 L/min, we observed a gradual increase of LV peak pressure from 49 ± 15 to 73 ± 11 mmHg (P = 0.001) and an improvement in organ perfusion. On the other hand, cardiac performance parameters revealed higher demands put on LV function: LV end-diastolic pressure increased from 7 ± 2 to 15 ± 3 mmHg, end-diastolic volume increased from 189 ± 26 to 218 ± 30 mL, end-systolic volume increased from 139 ± 17 to 167 ± 15 mL (all P < 0.001), and stroke work increased from 1434 ± 941 to 1892 ± 1036 mmHg*mL (P < 0.05). LV ejection fraction and isovolumetric contractility index did not change significantly. CONCLUSIONS: In decompensated chronic heart failure, excessive VA ECMO flow increases demands and has negative effects on the workload of LV. To protect the myocardium from harm, VA ECMO flow should be adjusted with respect to not only systemic perfusion, but also to LV parameters.


Assuntos
Oxigenação por Membrana Extracorpórea , Insuficiência Cardíaca , Animais , Insuficiência Cardíaca/terapia , Hemodinâmica , Miocárdio , Suínos , Função Ventricular Esquerda
4.
Perfusion ; 33(1_suppl): 65-70, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29788845

RESUMO

INTRODUCTION: Relationship between regional tissue oxygenation (rSO2) and microcirculatory changes during cardiac arrest (CA) are still unclear. Therefore, we designed an experimental study to correlate rSO2, microcirculation and systemic hemodynamic parameters in a porcine model of CA. METHODS: Ventricular fibrillation was induced in 24 female pigs (50±3kg) and left for three minutes untreated followed by five minutes of mechanical CPR. Regional and peripheral saturations were assessed by near-infrared spectroscopy, sublingual microcirculation by Sidestream Dark Field technology and continuous hemodynamic parameters, including systemic blood pressure (MAP) and carotid blood flow (CF), during baseline, CA and CPR periods. The Wilcoxon Signed-Rank test, the Friedman test and the partial correlation method were used to compare these parameters. RESULTS: Brain and peripheral rSO2 showed a gradual decrease during CA and only an increase of brain rSO2 during mechanical CPR (34.5 to 42.5; p=0.0001), reflected by a rapid decrease of microcirculatory and hemodynamic parameters during CA and a slight increase during CPR. Peripheral rSO2 was not changed significantly during CPR (38 to 38.5; p=0.09). We only found a moderate correlation of cerebral/peripheral rSO2 to microcirculatory parameters (PVD: r=0.53/0.46; PPV: r=0.6/0.5 and MFI: r=0.64/0.52) and hemodynamic parameters (MAP: r=0.64/0.71 and CF: 0.71/0.67). CONCLUSIONS: Our experimental study confirmed that monitoring brain and peripheral rSO2 is an easy-to-use method, well reflecting the hemodynamics during CA. However, only brain rSO2 reflects the CPR efforts and might be used as a potential quality indicator for CPR.


Assuntos
Encéfalo/fisiopatologia , Oximetria/métodos , Consumo de Oxigênio/fisiologia , Animais , Reanimação Cardiopulmonar/métodos , Feminino , Parada Cardíaca/fisiopatologia , Suínos
5.
J Transl Med ; 14(1): 163, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277706

RESUMO

BACKGROUND: Current research highlights the role of microcirculatory disorders in post-cardiac arrest patients. Affected microcirculation shows not only dissociation from systemic hemodynamics but also strong connection to outcome of these patients. However, only few studies evaluated microcirculation directly during cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). The aim of our experimental study in a porcine model was to describe sublingual microcirculatory changes during CA and CPR using recent videomicroscopic technology and provide a comparison to parameters of global hemodynamics. METHODS: Cardiac arrest was induced in 18 female pigs (50 ± 3 kg). After 3 min without treatment, 5 min of mechanical CPR followed. Continuous hemodynamic monitoring including systemic blood pressure and carotid blood flow was performed and blood lactate was measured at the end of baseline and CPR. Sublingual microcirculation was assessed by the Sidestream Dark Field (SDF) technology during baseline, CA and CPR. Following microcirculatory parameters were assessed off-line separately for capillaries (≤20 µm) and other vessels: total and perfused vessel density (TVD, PVD), proportion of perfused vessels (PPV), microvascular flow index (MFI) and heterogeneity index (HI). RESULTS: In comparison to baseline the CA small vessel microcirculation was only partially preserved: TVD 15.64 (13.59-18.48) significantly decreased to 12.51 (10.57-13.98) mm/mm(2), PVD 15.57 (13.56-17.80) to 5.53 (4.17-6.60) mm/mm(2), PPV 99.64 (98.05-100.00) to 38.97 (27.60-46.29) %, MFI 3.00 (3.00-3.08) to 1.29 (1.08-1.58) and HI increased from 0.08 (0.00-0.23) to 1.5 (0.71-2.00), p = 0.0003 for TVD and <0.0001 for others, respectively. Microcirculation during ongoing CPR in small vessels reached 59-85 % of the baseline values: TVD 13.33 (12.11-15.11) mm/mm(2), PVD 9.34 (7.34-11.52) mm/mm(2), PPV 72.34 (54.31-87.87) %, MFI 2.04 (1.58-2.42), HI 0.65 (0.41-1.07). The correlation between microcirculation and global hemodynamic parameters as well as to lactate was only weak to moderate (i.e. Spearman's ρ 0.02-0.51) and after adjustment for multiple correlations it was non-significant. CONCLUSIONS: Sublingual microcirculatory parameters did not correlate with global hemodynamic parameters during simulated porcine model of CA and CPR. SDF imaging provides additional information about tissue perfusion in the course of CPR.


Assuntos
Reanimação Cardiopulmonar , Parada Cardíaca/fisiopatologia , Hemodinâmica/fisiologia , Microcirculação/fisiologia , Animais , Feminino , Hemoglobinas/metabolismo , Lactatos/sangue , Sus scrofa , Temperatura
6.
Artif Organs ; 40(4): 353-9, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26412075

RESUMO

The protective effects of ischemic postconditioning (IPC) and nitric oxide (NO) administration have been demonstrated in several ischemic scenarios. However, current evidence regarding the effect of IPC and NO in extracorporeal cardiopulmonary resuscitation remains lacking. Fifteen female swine (body weight 45 kg) underwent veno-arterial extracorporeal membrane oxygenation (ECMO) implantation; cardiac arrest-ventricular fibrillation was induced by rapid ventricular pacing. After 20 min of cardiac arrest, blood flow was restored by increasing the ECMO flow rate to 4.5 L/min. The animals (five per group) were then randomly assigned to receive IPC (three cycles of 3 min ischemia and reperfusion), NO (80 ppm via oxygenator), or mild hypothermia (HT; 33.0°C). Cerebral oximetry and aortic blood pressure were monitored continuously. After 90 min of reperfusion, blood samples were drawn for the measurement of troponin I, myoglobin, creatine-phosphokinase, alanine aminotransferase, neuron-specific enolase, cystatin C, and reactive oxygen metabolite (ROM) levels. Significantly higher blood pressure and cerebral oxygen saturation values were observed in the HT group compared with the IPC and NO groups (P < 0.05). The levels of troponin I, myoglobin, creatine phosphokinase, and alanine aminotransferase were significantly lower in the HT group (P < 0.05); levels of neuron-specific enolase, cystatin C, and ROM were not significantly different. IPC and NO were comparable in all monitored parameters. The results of the present study indicate that IPC and NO administration are not superior interventions to HT for the maintenance of blood pressure, cerebral oxygenation, organ protection, and suppression of oxidative stress following extracorporeal cardiopulmonary resuscitation.


Assuntos
Reanimação Cardiopulmonar/métodos , Oxigenação por Membrana Extracorpórea/métodos , Pós-Condicionamento Isquêmico/métodos , Óxido Nítrico/uso terapêutico , Substâncias Protetoras/uso terapêutico , Alanina Transaminase/sangue , Animais , Pressão Sanguínea , Creatina Quinase/sangue , Cistatina C/sangue , Modelos Animais de Doenças , Feminino , Mioglobina/sangue , Estresse Oxidativo , Fosfopiruvato Hidratase/sangue , Espécies Reativas de Oxigênio/sangue , Suínos , Troponina I/sangue
7.
J Transl Med ; 13: 4, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25591755

RESUMO

BACKGROUND: Ventricular arrhythmias play an important role in cardiovascular mortality especially in patients with impaired cardiac and autonomic function. The aim of this experimental study was to determine, if renal denervation (RDN) could decrease the inducibility of ventricular fibrillation (VF) in a healthy porcine biomodel. METHODS: Controlled electrophysiological study was performed in 6 biomodels 40 days after RDN (RDN group) and in 6 healthy animals (control group). The inducibility of VF was tested by programmed ventricular stimulation from the apex of right ventricle (8 basal stimuli coupled with up to 4 extrastimuli) always three times in each biomodel using peripheral extracorporeal oxygenation for hemodynamic support. Further, basal heart rate (HR), PQ and QT intervals and effective refractory period of ventricles (ERP) were measured. Technical success of RDN was evaluated by histological examination. RESULTS: According to histological findings, RDN procedure was successfully performed in all biomodels. Comparing the groups, basal HR was lower in RDN group: 79 (IQR 58; 88) vs. 93 (72; 95) beats per minute (p = 0.003); PQ interval was longer in RDN group: 145 (133; 153) vs. 115 (113; 120) ms (p < 0.0001) and QTc intervals were comparable: 402 (382; 422) ms in RDN vs. 386 (356; 437) ms in control group (p = 0.1). ERP was prolonged significantly in RDN group: 159 (150; 169) vs. 140 (133; 150) ms (p = 0.001), but VF inducibility was the same (18/18 vs. 18/18 attempts). CONCLUSIONS: RDN decreased the influence of sympathetic nerve system on the heart conduction system in healthy porcine biomodel. However, the electrophysiological study was not associated with a decrease of VF inducibility after RDN.


Assuntos
Denervação , Rim/inervação , Rim/fisiopatologia , Período Refratário Eletrofisiológico , Fibrilação Ventricular/fisiopatologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Eletrocardiografia , Artéria Renal/patologia , Artéria Renal/fisiopatologia , Sus scrofa , Ultrassonografia , Fibrilação Ventricular/diagnóstico por imagem
8.
J Transl Med ; 13: 72, 2015 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-25886318

RESUMO

INTRODUCTION: Mild therapeutic hypothermia (MTH) is being used after cardiac arrest for its expected improvement in neurological outcome. Safety of MTH concerning inducibility of malignant arrhythmias has not been satisfactorily demonstrated. This study compares inducibility of ventricular fibrillation (VF) before and after induction of MTH in a whole body swine model and evaluates possible interaction with changing potassium plasma levels. METHODS: The extracorporeal cooling was introduced in fully anesthetized swine (n = 6) to provide MTH. Inducibility of VF was studied by programmed ventricular stimulation three times in each animal under the following: during normothermia (NT), after reaching the core temperature of 32°C (HT) and after another 60 minutes of stable hypothermia (HT60). Inducibility of VF, effective refractory period of the ventricles (ERP), QTc interval and potassium plasma levels were measured. RESULTS: Starting at normothermia of 38.7 (IQR 38.2; 39.8)°C, HT was achieved within 54 (39; 59) minutes and the core temperature was further maintained constant. Overall, the inducibility of VF was 100% (18/18 attempts) at NT, 83% (15/18) after reaching HT (P = 0.23) and 39% (7/18) at HT60 (P = 0.0001) using the same protocol. Similarly, ERP prolonged from 140 (130; 150) ms at NT to 206 (190; 220) ms when reaching HT (P < 0.001) and remained 206 (193; 220) ms at HT60. QTc interval was inversely proportional to the core temperature and extended from 376 (362; 395) at NT to 570 (545; 599) ms at HT. Potassium plasma level changed spontaneously: decreased during cooling from 4.1 (3.9; 4.8) to 3.7 (3.4; 4.1) mmol/L at HT (P < 0.01), then began to increase and returned to baseline level at HT60 (4.6 (4.4; 5.0) mmol/L, P = NS). CONCLUSIONS: According to our swine model, MTH does not increase the risk of VF induction by ventricular pacing in healthy hearts. Moreover, when combined with normokalemia, MTH exerts an antiarrhythmic effect despite prolonged QTc interval.


Assuntos
Fenômenos Eletrofisiológicos , Hipotermia Induzida/efeitos adversos , Fibrilação Ventricular/etiologia , Fibrilação Ventricular/fisiopatologia , Animais , Temperatura Corporal , Modelos Animais de Doenças , Oxigenação por Membrana Extracorpórea , Feminino , Modelos Lineares , Potássio/sangue , Sus scrofa , Fatores de Tempo , Fibrilação Ventricular/sangue
9.
J Transl Med ; 13: 266, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26275717

RESUMO

BACKGROUND: The aim of this study was to assess the relationship between extracorporeal blood flow (EBF) and left ventricular (LV) performance during venoarterial extracorporeal membrane oxygenation (VA ECMO) therapy. METHODS: Five swine (body weight 45 kg) underwent VA ECMO implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock with signs of tissue hypoxia was induced. Hemodynamic and cardiac performance parameters were then measured at different levels of EBF (ranging from 1 to 5 L/min) using arterial and venous catheters, a pulmonary artery catheter and a pressure-volume loop catheter introduced into the left ventricle. RESULTS: Myocardial hypoxia resulted in a decline in mean (±SEM) cardiac output to 2.8 ± 0.3 L/min and systolic blood pressure (SBP) to 60 ± 7 mmHg. With an increase in EBF from 1 to 5 L/min, SBP increased to 97 ± 8 mmHg (P < 0.001); however, increasing EBF from 1 to 5 L/min significantly negatively influences several cardiac performance parameters: cardiac output decreased form 2.8 ± 0.3 L/min to 1.86 ± 0.53 L/min (P < 0.001), LV end-systolic volume increased from 64 ± 11 mL to 83 ± 14 mL (P < 0.001), LV stroke volume decreased from 48 ± 9 mL to 40 ± 8 mL (P = 0.045), LV ejection fraction decreased from 43 ± 3 % to 32 ± 3 % (P < 0.001) and stroke work increased from 2096 ± 342 mmHg mL to 3031 ± 404 mmHg mL (P < 0.001). LV end-diastolic pressure and volume were not significantly affected. CONCLUSIONS: The results of the present study indicate that higher levels of VA ECMO blood flow in cardiogenic shock may negatively affect LV function. Therefore, it appears that to mitigate negative effects on LV function, optimal VA ECMO blood flow should be set as low as possible to allow adequate tissue perfusion.


Assuntos
Circulação Coronária/fisiologia , Vasos Coronários/fisiopatologia , Oxigenação por Membrana Extracorpórea , Choque Cardiogênico/fisiopatologia , Função Ventricular Esquerda , Animais , Vasos Coronários/patologia , Modelos Animais de Doenças , Feminino , Hemodinâmica , Miocárdio/patologia , Pressão
10.
Am J Nephrol ; 41(4-5): 420-5, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26183469

RESUMO

BACKGROUND: The patency of arteriovenous grafts (AVG) for hemodialysis is mostly limited by growing stenoses that lead to decreasing of blood flow, thromboses and finally to access failure. The aim of this study was to find out if detection of any pathology by duplex Doppler ultrasonography (DDU) early after creation of AVG could identify those with lower survival. METHODS: We retrospectively enrolled AVG examined by DDU in our center within 40 days after their creation during the last 10 years. The findings were divided into 4 subgroups: (1a) normal finding, (1b) DDU risk factor (low flow volume, medial calcinosis of the feeding artery, presence of intimal hyperplasia in the venous anastomosis), (2a) non-significant or (2b) significant stenosis. The primary outcome measure was the cumulative survival of people with AVGs, and the secondary was the primary (unassisted) survival. All patients underwent DDU surveillance every 3 months with pre-emptive treatment of significant stenoses. RESULTS: Overall, 340 cases were found; the median follow-up was 565 days. Normal DDU finding had 60% cases, DDU risk factor 18% cases, non-significant stenosis 13% cases and significant stenosis 9% cases. Occurrence of early significant stenosis was associated with high risk of access loss (hazards ratio (HR) 14.73; 95% CI 5.10-42.58; p < 0.0001). Similarly, the presence of a DDU risk factor and of a non-significant stenosis were related to significantly shorter access lifespan (HR 2.86; 95% CI 1.10-7.40; p = 0.03 and HR 2.83; 95% CI 1.12-7.17; p = 0.03, respectively). CONCLUSION: DDU examination of AVG early after their creation can identify those at higher risk and may contribute to individualize the surveillance strategy.


Assuntos
Derivação Arteriovenosa Cirúrgica , Prótese Vascular , Oclusão de Enxerto Vascular/diagnóstico por imagem , Falência Renal Crônica/terapia , Neointima/diagnóstico por imagem , Calcificação Vascular/diagnóstico por imagem , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Implante de Prótese Vascular , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Politetrafluoretileno , Diálise Renal/métodos , Estudos Retrospectivos , Fatores de Risco , Ultrassonografia Doppler Dupla , Adulto Jovem
11.
Prague Med Rep ; 116(3): 239-43, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26445396

RESUMO

Injury of an artery has a significantly worse prognosis for the patient than a venous injury. Blunt injuries of lower limb digital arteries with the development of acute ischemia present a very rare phenomenon. A crush mechanism with a defect of the non-wetted surface of vessel's inner part and the development of subsequent thromboischemic lesion is essential for the development of ischemia. We report a blunt injury of the right lower limb in a patient after incorrect stepping with subsequent lesion of digital arteries and the development of acute acral ischemia of the right toes.


Assuntos
Traumatismos do Pé/complicações , Isquemia/etiologia , Dedos do Pé/irrigação sanguínea , Lesões do Sistema Vascular/complicações , Ferimentos não Penetrantes/complicações , Adulto , Angiografia , Traumatismos do Pé/diagnóstico por imagem , Humanos , Isquemia/diagnóstico por imagem , Masculino , Dedos do Pé/diagnóstico por imagem , Lesões do Sistema Vascular/diagnóstico por imagem , Ferimentos não Penetrantes/diagnóstico por imagem
12.
Prague Med Rep ; 116(4): 279-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26654801

RESUMO

A possible effect of mini-invasive heart intervention on a response of hypothalamo-pituitary-adrenal stress axis and conversion of cortisone to cortisol were studied. We have analysed two stress markers levels (cortisol, cortisone) and cortisol/cortisone ratio in 25 sows using minimally invasive heart catheterisation as the stress factor. The values of studied parameters were assessed in four periods of the experiment: (1) the baseline level on the day before intervention, (2) after the introduction of anaesthesia, (3) after conducting tissue stimulation or ablation, and (4) after the end of the catheterisation. For statistical analyses we used the non-parametric Friedman test for four dependent samples (including all four stages of the operation) or three dependent samples (influence of operation only, baseline level was excluded). Statistically significant differences in both Friedman tests were found for cortisol and for cortisone. We have found the highest level of cortisol/cortisone ratio in unstressed conditions, then it decreased to the minimal level at the end of the intervention. We have concluded that cortisol levels are blunted by the influence of anaesthesia after its administration, and therefore decrease back to the baseline at the end of the operation.


Assuntos
Cateterismo Cardíaco , Cortisona/sangue , Hidrocortisona/sangue , Estresse Fisiológico/fisiologia , Animais , Biomarcadores/sangue , Suínos
13.
J Transl Med ; 11: 124, 2013 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-23688243

RESUMO

BACKGROUND: Mild therapeutic hypothermia (HT) has been implemented in the management of post cardiac arrest (CA) syndrome after the publication of clinical trials comparing HT with common practice (ie, usually hyperthermia). Current evidence on the comparison between therapeutic HT and controlled normothermia (NT) in CA survivors, however, remains insufficient. METHODS: Eight female swine (sus scrofa domestica; body weight 45 kg) were randomly assigned to receive either mild therapeutic HT or controlled NT, with four animals per group. Veno-arterial extracorporeal membrane oxygenation (ECMO) was established and at minimal ECMO flow (0.5 L/min) ventricular fibrillation was induced by rapid ventricular pacing. After 20 min of CA, circulation was restored by increasing the ECMO flow to 4.5 L/min; 90 min of reperfusion followed. Target core temperatures (HT: 33°C; NT: 36.8°C) were maintained using the heat exchanger on the oxygenator. Invasive blood pressure was measured in the aortic arch, and cerebral oxygenation was assessed using near-infrared spectroscopy. After 60 min of reperfusion, up to three defibrillation attempts were performed. After 90 min of reperfusion, blood samples were drawn for the measurement of troponin I (TnI), myoglobin (MGB), creatine-phosphokinase (CPK), alanin-aminotransferase (ALT), neuron-specific enolase (NSE) and cystatin C (CysC) levels. Reactive oxygen metabolite (ROM) levels and biological antioxidant potential (BAP) were also measured. RESULTS: Significantly higher blood pressure and cerebral oxygenation values were observed in the HT group (P<0.05). Sinus rhythm was restored in all of the HT animals and in one from the NT group. The levels of TnI, MGB, CPK, ALT, and ROM were significantly lower in the HT group (P<0.05); levels of NSE, CysC, and BAP were comparable in both groups. CONCLUSIONS: Our results from animal model of cardiac arrest indicate that HT may be superior to NT for the maintenance of blood pressure, cerebral oxygenation, organ protection and oxidative stress suppression following CA.


Assuntos
Encéfalo/metabolismo , Parada Cardíaca/metabolismo , Hipotermia Induzida/métodos , Estresse Oxidativo , Oxigênio/metabolismo , Animais , Biomarcadores/sangue , Pressão Sanguínea , Temperatura Corporal , Modelos Animais de Doenças , Oxigenação por Membrana Extracorpórea/métodos , Feminino , Sus scrofa
14.
Pulm Pharmacol Ther ; 26(6): 655-60, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23524014

RESUMO

BACKGROUND: ECMO (extracorporeal membrane oxygenation) is increasingly used in severe hemodynamic compromise and cardiac arrest (CA). Pulmonary infections are frequent in these patients. Venoarterial (VA) ECMO decreases pulmonary blood flow and antibiotic availability in lungs during VA ECMO treated CA is not known. We aimed to assess early vancomycin, amikacin and gentamicin concentrations in the pulmonary artery as well as tracheal aspirate and to determine penetration ratios of these antibiotics to lung tissue in a pig model of VA ECMO treated CA. METHODS: Twelve female pigs, body weight 51.5 ± 3.5 kg, were subjected to prolonged CA managed by different modes of VA ECMO. Anesthetized animals underwent 15 min of ventricular fibrillation (VF) followed by continued VF with ECMO flow of 100 mL/kg/min. Immediately after institution of ECMO, a 30 min vancomycin infusion (10 mg/kg) was started and amikacin and gentamicin boluses (7.5 and 3 mg/kg, respectively) were administered. ECMO circuit, aortic, pulmonary arterial, and tracheal aspirate concentrations of antibiotics were measured at 30 and 60 min after administration; penetration ratios were calculated. RESULTS: All 30 min antibiotic concentrations and 60 min concentration for gentamicin in the pulmonary artery were no different than the aorta. However, the 60 min pulmonary artery vancomycin and amikacin values were significantly higher than aortic, 19.8 (14.3-21.6) vs. 17.6 (14.2-19.0) mg/L, p = 0.009, and 15.6 mg/L (11.0-18.6) vs. 11.2 (10.4-17.2) mg/L, p = 0.036, respectively. One hour penetration ratios were 18.5% for vancomycin, 34.9% for gentamicin and 38.8% for amikacin. CONCLUSION: In a pig model of VA ECMO treated prolonged CA, despite diminished pulmonary flow, VA ECMO does not decrease early vancomycin, gentamicin, and amikacin concentrations in pulmonary artery. Within 1 h post administration, antibiotics can be detected in tracheal aspirate in adequate concentrations.


Assuntos
Antibacterianos/farmacocinética , Oxigenação por Membrana Extracorpórea/métodos , Parada Cardíaca/terapia , Pulmão/metabolismo , Amicacina/farmacocinética , Animais , Modelos Animais de Doenças , Feminino , Gentamicinas/farmacocinética , Artéria Pulmonar/metabolismo , Suínos , Fatores de Tempo , Distribuição Tecidual , Vancomicina/farmacocinética
16.
J Vis Exp ; (191)2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688567

RESUMO

Animal models of cardiac pacing are beneficial for testing novel devices, studying the pathophysiology of artificially paced heart rhythms, and studying arrhythmia-induced cardiomyopathies and subsequent heart failure. Currently, only a few such models are available, and they mostly require extensive resources. We report a new experimental cardiac pacing model in small mammals with the potential to study arrhythmia-induced heart failure. In six New Zealand white rabbits (mean weight: 3.5 kg) under general inhalational anesthesia the jugular region was dissected and a single pacing lead was inserted via the right external jugular vein. Using fluoroscopic guidance, the lead was further advanced to the right ventricular apex, where it was stabilized using passive fixation. A cardiac pacemaker was then connected and buried in a subcutaneous pocket. The pacemaker implantation was successful with good healing; the rabbit anatomy is favorable for the lead placement. During 6 months of follow-up with intermittent pacing, the mean sensed myocardial potential was 6.3 mV (min: 2.8 mV, max: 12 mV), and the mean lead impedance measured was 744 Ω (min: 370 Ω, max: 1014 Ω). The pacing threshold was initially 0.8 V ± 0.2 V and stayed stable during the follow-up. This present study is the first to present successful transvenous cardiac pacing in a small-mammal model. Despite the size and tissue fragility, human-size instrumentation with adjustments can safely be used for chronic cardiac pacing, and thus, this innovative model is suitable for studying the development of arrhythmia-induced cardiomyopathy and consequent heart failure pathophysiology.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Marca-Passo Artificial , Humanos , Coelhos , Animais , Estimulação Cardíaca Artificial , Arritmias Cardíacas , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/terapia , Mamíferos
17.
Front Physiol ; 14: 1113568, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37020459

RESUMO

Low-volume lung injury encompasses local concentration of stresses in the vicinity of collapsed regions in heterogeneously ventilated lungs. We aimed to study the effects on ventilation and perfusion distributions of a sequential lateral positioning (30°) strategy using electrical impedance tomography imaging in a porcine experimental model of early acute respiratory distress syndrome (ARDS). We hypothesized that such strategy, including a real-time individualization of positive end-expiratory pressure (PEEP) whenever in lateral positioning, would provide attenuation of collapse in the dependent lung regions. A two-hit injury acute respiratory distress syndrome experimental model was established by lung lavages followed by injurious mechanical ventilation. Then, all animals were studied in five body positions in a sequential order, 15 min each: Supine 1; Lateral Left; Supine 2; Lateral Right; Supine 3. The following functional images were analyzed by electrical impedance tomography: ventilation distributions and regional lung volumes, and perfusion distributions. The induction of the acute respiratory distress syndrome model resulted in a marked fall in oxygenation along with low regional ventilation and compliance of the dorsal half of the lung (gravitational-dependent in supine position). Both the regional ventilation and compliance of the dorsal half of the lung greatly increased along of the sequential lateral positioning strategy, and maximally at its end. In addition, a corresponding improvement of oxygenation occurred. In conclusion, our sequential lateral positioning strategy, with sufficient positive end-expiratory pressure to prevent collapse of the dependent lung units during lateral positioning, provided a relevant diminution of collapse in the dorsal lung in a porcine experimental model of early acute respiratory distress syndrome.

18.
Crit Care ; 16(2): R50, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22424292

RESUMO

INTRODUCTION: Extracorporeal membrane oxygenation (ECMO) is increasingly used in cardiac arrest (CA). Adequacy of carotid and coronary blood flows (CaBF, CoBF) and coronary perfusion pressure (CoPP) in ECMO treated CA is not well established. This study compares femoro-femoral (FF) to femoro-subclavian (FS) ECMO and intraaortic balloon counterpulsation (IABP) contribution based on CaBF, CoBF, CoPP, myocardial and brain oxygenation in experimental CA managed by ECMO. METHODS: In 11 female pigs (50.3 ± 3.4 kg), CA was randomly treated by FF versus FS ECMO ± IABP. Animals under general anesthesia had undergone 15 minutes of ventricular fibrillation (VF) with ECMO flow of 5 to 10 mL/kg/min simulating low-flow CA followed by continued VF with ECMO flow of 100 mL/kg/min. CaBF and CoBF were measured by a Doppler flow wire, cerebral and peripheral oxygenation by near infrared spectroscopy. CoPP, myocardial oxygen metabolism and resuscitability were determined. RESULTS: CaBF reached values > 80% of baseline in all regimens. CoBF > 80% was reached only by the FF ECMO, 90.0% (66.1, 98.6). Addition of IABP to FF ECMO decreased CoBF to 60.7% (55.1, 86.2) of baseline, P = 0.004. FS ECMO produced 70.0% (49.1, 113.2) of baseline CoBF, significantly lower than FF, P = 0.039. Addition of IABP to FS did not change the CoBF; however, it provided significantly higher flow, 76.7% (71.9, 111.2) of baseline, compared to FF + IABP, P = 0.026. Both brain and peripheral regional oxygen saturations decreased after induction of CA to 23% (15.0, 32.3) and 34% (23.5, 34.0), respectively, and normalized after ECMO institution. For brain saturations, all regimens reached values exceeding 80% of baseline, none of the comparisons between respective treatment approaches differed significantly. After a decline to 15 mmHg (9.5, 20.8) during CA, CoPP gradually rose with time to 68 mmHg (43.3, 84.0), P = 0 .003, with best recovery on FF ECMO. Resuscitability of the animals was high, both 5 and 60 minutes return of spontaneous circulation occured in eight animals (73%). CONCLUSIONS: In a pig model of CA, both FF and FS ECMO assure adequate brain perfusion and oxygenation. FF ECMO offers better CoBF than FS ECMO. Addition of IABP to FF ECMO worsens CoBF. FF ECMO, more than FS ECMO, increases CoPP over time.


Assuntos
Velocidade do Fluxo Sanguíneo/fisiologia , Artérias Carótidas/fisiologia , Circulação Coronária/fisiologia , Vasos Coronários/fisiologia , Oxigenação por Membrana Extracorpórea/métodos , Parada Cardíaca/fisiopatologia , Balão Intra-Aórtico , Análise de Variância , Animais , Modelos Animais de Doenças , Feminino , Hemodinâmica , Distribuição Aleatória , Suínos
19.
Front Physiol ; 13: 881658, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574433

RESUMO

Background: Arteriovenous fistulas (AVF) represent a low resistant circuit. It is known that their opening leads to decreased systemic vascular resistance, increased cardiac output and other hemodynamic changes. Possible competition of AVF and perfusion of other organs has been observed before, however the specific impact of AVF has not been elucidated yet. Previous animal models studied long-term changes associated with a surgically created high flow AVF. The aim of this study was to create a simple AVF model for the analysis of acute hemodynamic changes. Methods: Domestic female pigs weighing 62.6 ± 5.2 kg were used. All the experiments were held under general anesthesia. The AVF was created using high-diameter ECMO cannulas inserted into femoral artery and vein. Continuous hemodynamic monitoring was performed throughout the protocol. Near-infrared spectroscopy sensors, flow probes and flow wires were inserted to study brain and heart perfusion. Results: AVF blood flow was 2.1 ± 0.5 L/min, which represented around 23% of cardiac output. We observed increase in cardiac output (from 7.02 ± 2.35 L/min to 9.19 ± 2.99 L/min, p = 0.0001) driven dominantly by increased heart rate, increased pulmonary artery pressure, and associated right ventricular work. Coronary artery flow velocity rose. On the contrary, carotid artery flow and brain and muscle tissue oxygenation measured by NIRS decreased significantly. Conclusions: Our new non-surgical AVF model is reproducible and demonstrated an acute decrease of brain and muscle perfusion.

20.
Sci Rep ; 12(1): 16528, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-36192569

RESUMO

Real-time effects of changing body position and positive end-expiratory pressure (PEEP) on regional lung overdistension and collapse in individual patients remain largely unknown and not timely monitored. The aim of this study was to individualize PEEP in supine and prone body positions seeking to reduce lung collapse and overdistension in mechanically ventilated patients with coronavirus disease (COVID-19)-induced acute respiratory distress syndrome (ARDS). We hypothesized that prone positioning with bedside titrated PEEP would provide attenuation of both overdistension and collapse. In this prospective observational study, patients with COVID-19-induced ARDS under mechanical ventilation were included. We used electrical impedance tomography (EIT) with decremental PEEP titration algorithm (PEEPEIT-titration), which provides information on regional lung overdistension and collapse, along with global respiratory system compliance, to individualize PEEP and body position. PEEPEIT-titration in supine position followed by PEEPEIT-titration in prone position were performed. Immediately before each PEEPEIT-titration, the same lung recruitment maneuver was performed: 2 min of PEEP 24 cmH2O and driving pressure of 15 cmH2O. Forty-two PEEPEIT-titration were performed in ten patients (21 pairs supine and prone positions). We have found larger % of overdistension along the PEEP titration in prone than supine position (P = 0.042). A larger % of collapse along the PEEP titration was found in supine than prone position (P = 0.037). A smaller respiratory system compliance was found in prone than supine position (P < 0.0005). In patients with COVID-19-induced ARDS, prone body position, when compared with supine body position, decreased lung collapse at low PEEP levels, but increased lung overdistension at PEEP levels greater than 10 cm H2O.Trial registration number: NCT04460859.


Assuntos
COVID-19 , Respiração com Pressão Positiva , Atelectasia Pulmonar , Síndrome do Desconforto Respiratório , COVID-19/complicações , COVID-19/terapia , Humanos , Pulmão/patologia , Decúbito Ventral , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/terapia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa