Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Nature ; 577(7792): 647-651, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31988511

RESUMO

Most bulk-scale graphene is produced by a top-down approach, exfoliating graphite, which often requires large amounts of solvent with high-energy mixing, shearing, sonication or electrochemical treatment1-3. Although chemical oxidation of graphite to graphene oxide promotes exfoliation, it requires harsh oxidants and leaves the graphene with a defective perforated structure after the subsequent reduction step3,4. Bottom-up synthesis of high-quality graphene is often restricted to ultrasmall amounts if performed by chemical vapour deposition or advanced synthetic organic methods, or it provides a defect-ridden structure if carried out in bulk solution4-6. Here we show that flash Joule heating of inexpensive carbon sources-such as coal, petroleum coke, biochar, carbon black, discarded food, rubber tyres and mixed plastic waste-can afford gram-scale quantities of graphene in less than one second. The product, named flash graphene (FG) after the process used to produce it, shows turbostratic arrangement (that is, little order) between the stacked graphene layers. FG synthesis uses no furnace and no solvents or reactive gases. Yields depend on the carbon content of the source; when using a high-carbon source, such as carbon black, anthracitic coal or calcined coke, yields can range from 80 to 90 per cent with carbon purity greater than 99 per cent. No purification steps are necessary. Raman spectroscopy analysis shows a low-intensity or absent D band for FG, indicating that FG has among the lowest defect concentrations reported so far for graphene, and confirms the turbostratic stacking of FG, which is clearly distinguished from turbostratic graphite. The disordered orientation of FG layers facilitates its rapid exfoliation upon mixing during composite formation. The electric energy cost for FG synthesis is only about 7.2 kilojoules per gram, which could render FG suitable for use in bulk composites of plastic, metals, plywood, concrete and other building materials.

2.
Small ; 20(8): e2307342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821410

RESUMO

Solid-state batteries (SSBs) are poised to replace traditional organic liquid-electrolyte lithium-ion batteries due to their higher safety and energy density. Oxide-based solid electrolytes (SEs) are particularly attractive for their stability in air and inability to ignite during thermal runaway. However, achieving high-performance in oxide-based SSBs requires the development of an intimate and robust SE-cathode interface to overcome typically large interfacial resistances. The transition interphase should be both physically and chemically active. This study presents a thin, conductive interphase constructed between lithium aluminum titanium phosphate and lithium cobalt oxide using a rapid sintering method that modifies the interphase within 10 s. The rapid heating and cooling rates restrict side reactions and interdiffusion on the interface. SSBs with thick composite cathodes demonstrate a high initial capacity of ≈120 mAh g-1 over 200 cycles at room temperature. Furthermore, the rapid sintering method can be extended to other cathode systems under similar conditions. These findings highlight the importance of constructing an appropriate SE-cathode interface and provide insight into designing practical SSBs.

3.
Angew Chem Int Ed Engl ; 53(6): 1565-9, 2014 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-24453109

RESUMO

Bi- and trilayer graphene have attracted intensive interest due to their rich electronic and optical properties, which are dependent on interlayer rotations. However, the synthesis of high-quality large-size bi- and trilayer graphene single crystals still remains a challenge. Here, the synthesis of 100 µm pyramid-like hexagonal bi- and trilayer graphene single-crystal domains on Cu foils using chemical vapor deposition is reported. The as-produced graphene domains show almost exclusively either 0° or 30° interlayer rotations. Raman spectroscopy, transmission electron microscopy, and Fourier-transformed infrared spectroscopy were used to demonstrate that bilayer graphene domains with 0° interlayer stacking angles were Bernal stacked. Based on first-principle calculations, it is proposed that rotations originate from the graphene nucleation at the Cu step, which explains the origin of the interlayer rotations and agrees well with the experimental observations.

4.
Small Methods ; 8(3): e2301144, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38009769

RESUMO

The flash Joule heating (FJH) method converts many carbon feedstocks into graphene in milliseconds to seconds using an electrical pulse. This opens an opportunity for processing low or negative value resources, such as coal and plastic waste, into high value graphene. Here, a lab-scale automation FJH system that allows the synthesis of 1.1 kg of turbostratic flash graphene from coal-based metallurgical coke (MC) in 1.5 h is demonstrated. The process is based on the automated conversion of 5.7 g of MC per batch using an electrical pulse width modulation system to conduct the bottom-up upcycle of MC into flash graphene. This study then compare this method to two other scalable graphene synthesis techniques by both a life cycle assessment and a technoeconomic assessment.

5.
Adv Mater ; 35(8): e2207303, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36462512

RESUMO

The ever-increasing production of commercial lithium-ion batteries (LIBs) will result in a staggering accumulation of waste when they reach their end of life. A closed-loop solution, with effective recycling of spent LIBs, will lessen both the environmental impacts and economic cost of their use. Presently, <5% of spent LIBs are recycled and the regeneration of graphite anodes has, unfortunately, been mostly overlooked despite the considerable cost of battery-grade graphite. Here, an ultrafast flash recycling method to regenerate the graphite anode is developed and valuable battery metal resources are recovered. Selective Joule heating is applied for only seconds to efficiently decompose the resistive impurities. The generated inorganic salts, including lithium, cobalt, nickel, and manganese, can be easily recollected from the flashed anode waste using diluted acid, specifically 0.1 m HCl. The flash-recycled anode preserves the graphite structure and is coated with a solid-electrolyte-interphase-derived carbon shell, contributing to high initial specific capacity, superior rate performance, and cycling stability, when compared to anode materials recycled using a high-temperature-calcination method. Life-cycle-analysis relative to current graphite production and recycling methods indicate that flash recycling can significantly reduce the total energy consumption and greenhouse gas emission while turning anode recycling into an economically advantageous process.

6.
Adv Mater ; 35(48): e2306763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37694496

RESUMO

Hydrogen gas (H2 ) is the primary storable fuel for pollution-free energy production, with over 90 million tonnes used globally per year. More than 95% of H2 is synthesized through metal-catalyzed steam methane reforming that produces 11 tonnes of carbon dioxide (CO2 ) per tonne H2 . "Green H2 " from water electrolysis using renewable energy evolves no CO2 , but costs 2-3× more, making it presently economically unviable. Here catalyst-free conversion of waste plastic into clean H2 along with high purity graphene is reported. The scalable procedure evolves no CO2 when deconstructing polyolefins and produces H2 in purities up to 94% at high mass yields. The sale of graphene byproduct at just 5% of its current value yields H2 production at a negative cost. Life-cycle assessment demonstrates a 39-84% reduction in emissions compared to other H2 production methods, suggesting the flash H2 process to be an economically viable, clean H2 production route.

7.
Nat Commun ; 14(1): 6371, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821460

RESUMO

Soil contamination is an environmental issue due to increasing anthropogenic activities. Existing processes for soil remediation suffer from long treatment time and lack generality because of different sources, occurrences, and properties of pollutants. Here, we report a high-temperature electrothermal process for rapid, water-free remediation of multiple pollutants in soil. The temperature of contaminated soil with carbon additives ramps up to 1000 to 3000 °C as needed within seconds via pulsed direct current input, enabling the vaporization of heavy metals like Cd, Hg, Pb, Co, Ni, and Cu, and graphitization of persistent organic pollutants like polycyclic aromatic hydrocarbons. The rapid treatment retains soil mineral constituents while increases infiltration rate and exchangeable nutrient supply, leading to soil fertilization and improved germination rates. We propose strategies for upscaling and field applications. Techno-economic analysis indicates the process holds the potential for being more energy-efficient and cost-effective compared to soil washing or thermal desorption.

8.
Sci Adv ; 9(39): eadh5131, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37756404

RESUMO

The staggering accumulation of end-of-life lithium-ion batteries (LIBs) and the growing scarcity of battery metal sources have triggered an urgent call for an effective recycling strategy. However, it is challenging to reclaim these metals with both high efficiency and low environmental footprint. We use here a pulsed dc flash Joule heating (FJH) strategy that heats the black mass, the combined anode and cathode, to >2100 kelvin within seconds, leading to ~1000-fold increase in subsequent leaching kinetics. There are high recovery yields of all the battery metals, regardless of their chemistries, using even diluted acids like 0.01 M HCl, thereby lessening the secondary waste stream. The ultrafast high temperature achieves thermal decomposition of the passivated solid electrolyte interphase and valence state reduction of the hard-to-dissolve metal compounds while mitigating diffusional loss of volatile metals. Life cycle analysis versus present recycling methods shows that FJH significantly reduces the environmental footprint of spent LIB processing while turning it into an economically attractive process.

9.
ACS Nano ; 16(5): 7284-7290, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35380424

RESUMO

Plastic waste (PW) and increasing atmospheric carbon dioxide (CO2) levels are among the top environmental concerns presently facing humankind. With an ambitious 2050 zero-CO2 emissions goal, there is a demand for economical CO2 capture routes. Here we show that the thermal treatment of PW in the presence of potassium acetate yields an effective carbon sorbent with pores width of 0.7-1.4 nm for CO2 capture. The PW to carbon sorbent process works with single or mixed streams of polyolefin plastics. The CO2 capacity of the sorbent at 25 °C is 17.0 ± 1.1 wt % (3.80 ± 0.25 mmol g-1) at 1 bar and 5.0 ± 0.6 wt % (1.13 ± 0.13 mmol g-1) at 0.15 bar, and it regenerates upon reaching 75 ± 5 °C. The CO2 capture cost from flue gas via this technology is estimated to be <$21 ton-1 CO2, much lower than competing CO2 capture technologies. Hence, this PW-derived carbon material should find utility in the capture of CO2 from point sources of high CO2 emissions while providing a use for otherwise deleterious PW.

10.
ACS Nano ; 16(4): 6646-6656, 2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35320673

RESUMO

Heteroatom doping can effectively tailor the local structures and electronic states of intrinsic two-dimensional materials, and endow them with modified optical, electrical, and mechanical properties. Recent studies have shown the feasibility of preparing doped graphene from graphene oxide and its derivatives via some post-treatments, including solid-state and solvothermal methods, but they require reactive and harsh reagents. However, direct synthesis of various heteroatom-doped graphene in larger quantities and high purity through bottom-up methods remains challenging. Here, we report catalyst-free and solvent-free direct synthesis of graphene doped with various heteroatoms in bulk via flash Joule heating (FJH). Seven types of heteroatom-doped flash graphene (FG) are synthesized through millisecond flashing, including single-element-doped FG (boron, nitrogen, oxygen, phosphorus, sulfur), two-element-co-doped FG (boron and nitrogen), as well as three-element-co-doped FG (boron, nitrogen, and sulfur). A variety of low-cost dopants, such as elements, oxides, and organic compounds are used. The graphene quality of heteroatom-doped FG is high, and similar to intrinsic FG, the material exhibits turbostraticity, increased interlayer spacing, and superior dispersibility. Electrochemical oxygen reduction reaction of different heteroatom-doped FG is tested, and sulfur-doped FG shows the best performance. Lithium metal battery tests demonstrate that nitrogen-doped FG exhibits a smaller nucleation overpotential compared to Cu or undoped FG. The electrical energy cost for the synthesis of heteroatom-doped FG synthesis is only 1.2 to 10.7 kJ g-1, which could render the FJH method suitable for low-cost mass production of heteroatom-doped graphene.

11.
Nat Commun ; 13(1): 5027, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36028480

RESUMO

High-surface-area α-Al2O3 nanoparticles are used in high-strength ceramics and stable catalyst supports. The production of α-Al2O3 by phase transformation from γ-Al2O3 is hampered by a high activation energy barrier, which usually requires extended high-temperature annealing (~1500 K, > 10 h) and suffers from aggregation. Here, we report the synthesis of dehydrated α-Al2O3 nanoparticles (phase purity ~100%, particle size ~23 nm, surface area ~65 m2 g-1) by a pulsed direct current Joule heating of γ-Al2O3. The phase transformation is completed at a reduced bulk temperature and duration (~573 K, < 1 s) via an intermediate δ'-Al2O3 phase. Numerical simulations reveal the resistive hotspot-induced local heating in the pulsed current process enables the rapid transformation. Theoretical calculations show the topotactic transition (from γ- to δ'- to α-Al2O3) is driven by their surface energy differences. The α-Al2O3 nanoparticles are sintered to nanograined ceramics with hardness superior to commercial alumina and approaching that of sapphire.

12.
ACS Nano ; 15(6): 10542-10552, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34097826

RESUMO

As graphene enjoys worldwide research and deployment, the biological impact, geologic degradation, environmental retention, and even some physical phenomena remain less well studied. Bulk production of 13C-graphene yields a powerful route to study all of these questions. Gram-scale synthesis of high-quality and high-purity turbostratic flash graphene with varying amounts of 13C-enrichment, from 5% to 99%, is reported here. The material is characterized by solid state NMR spectroscopy, Raman spectroscopy, IR spectroscopy, X-ray photoelectron spectroscopy, and inductively coupled plasma mass spectrometry. Notably, an unusual enhancement in the Raman spectroscopic D' peak is observed, resulting from the modification in vibrational frequency through isotopic enrichment favoring intravalley phonon scattering modes. While the IR absorbance spectrum of graphene is for the most part silent, we prepare here 13C-enhanced graphene samples that show a large aromatic 12C═13C stretch that reveals this IR-active mode.

13.
Nat Commun ; 12(1): 5794, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608143

RESUMO

Precious metal recovery from electronic waste, termed urban mining, is important for a circular economy. Present methods for urban mining, mainly smelting and leaching, suffer from lengthy purification processes and negative environmental impacts. Here, a solvent-free and sustainable process by flash Joule heating is disclosed to recover precious metals and remove hazardous heavy metals in electronic waste within one second. The sample temperature ramps to ~3400 K in milliseconds by the ultrafast electrical thermal process. Such a high temperature enables the evaporative separation of precious metals from the supporting matrices, with the recovery yields >80% for Rh, Pd, Ag, and >60% for Au. The heavy metals in electronic waste, some of which are highly toxic including Cr, As, Cd, Hg, and Pb, are also removed, leaving a final waste with minimal metal content, acceptable even for agriculture soil levels. Urban mining by flash Joule heating would be 80× to 500× less energy consumptive than using traditional smelting furnaces for metal-component recovery and more environmentally friendly.

14.
ACS Nano ; 15(7): 11158-11167, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34138536

RESUMO

Flash Joule heating (FJH), an advanced material synthesis technique, has been used for the production of high-quality carbon materials. Direct current discharge through the precursors by large capacitors has successfully converted carbon-based starting materials into bulk quantities of turbostratic graphene by the FJH process. However, the formation of other carbon allotropes, such as nanodiamonds and concentric carbon materials, as well as the covalent functionalization of different carbon allotropes by the FJH process, remains challenging. Here, we report the solvent-free FJH synthesis of three different fluorinated carbon allotropes: fluorinated nanodiamonds, fluorinated turbostratic graphene, and fluorinated concentric carbon. This is done by millisecond flashing of organic fluorine compounds and fluoride precursors. Spectroscopic analysis confirms the modification of the electronic states and the existence of various short-range and long-range orders in the different fluorinated carbon allotropes. The flash-time-dependent relationship is further demonstrated to control the phase evolution and product compositions.

15.
J Am Chem Soc ; 132(43): 15246-51, 2010 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-20929219

RESUMO

This paper reports a bottom-up solution-phase process for the preparation of pristine and heteroatom (boron, phosphorus, or nitrogen)-substituted carbon scaffolds that show good surface areas and enhanced hydrogen adsorption capacities and binding energies. The synthesis method involves heating chlorine-containing small organic molecules with metallic sodium at reflux in high-boiling solvents. For heteroatom incorporation, heteroatomic electrophiles are added to the reaction mixture. Under the reaction conditions, micrometer-sized graphitic sheets assembled by 3-5 nm-sized domains of graphene nanoflakes are formed, and when they are heteroatom-substituted, the heteroatoms are uniformly distributed. The substituted carbon scaffolds enriched with heteroatoms (boron ∼7.3%, phosphorus ∼8.1%, and nitrogen ∼28.1%) had surface areas as high as 900 m(2) g(-1) and enhanced reversible hydrogen physisorption capacities relative to pristine carbon scaffolds or common carbonaceous materials. In addition, the binding energies of the substituted carbon scaffolds, as measured by adsorption isotherms, were 8.6, 8.3, and 5.6 kJ mol(-1) for the boron-, phosphorus-, and nitrogen-enriched carbon scaffolds, respectively.

16.
ACS Nano ; 14(11): 15595-15604, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33119255

RESUMO

In this work, an approach to upcycling plastic waste (PW) products is presented. The method relies on flash Joule heating (FJH) to convert PW into flash graphene (FG). In addition to FG, the process results in the formation of carbon oligomers, hydrogen, and light hydrocarbons. In order to make high-quality graphene, a sequential alternating current (AC) and direct current (DC) flash is used. The FJH process requires no catalyst and works for PW mixtures, which makes the process suitable for handling landfill PW. The energy required to convert PW to FG is ∼23 kJ/g or ∼$125 in electricity per ton of PW, potentially making this process economically attractive for scale-up. The FG was characterized by Raman spectroscopy and had an I2D/IG peak ratio up to 6 with a low-intensity D band. Moreover, transmission electron microscopy and X-ray diffraction analysis show that the FG is turbostratic with an interlayer spacing of 3.45 Å. The large interlayer spacing will facilitate its dispersion in liquids and composites. Analysis of FG dispersions in 1% Pluronic aqueous solution shows that concentrations up to 1.2 mg/mL can be achieved. The carbon oligomers that distilled from the process were characterized by Fourier transform infrared spectroscopy and have chemical structures similar to the starting PW. Initial analysis of gas-phase products shows the formation of considerable amounts of hydrogen along with other light hydrocarbons. As graphene is naturally occurring and shows a low toxicity profile, this could be an environmentally beneficial method to upcycle PW.

17.
J Am Chem Soc ; 131(2): 723-8, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19102650

RESUMO

Single-walled carbon nanotube (SWCNT) fibers were engineered to become a scaffold for the storage of hydrogen. Carbon nanotube fibers were swollen in oleum (fuming sulfuric acid), and organic spacer groups were covalently linked between the nanotubes using diazonium functionalization chemistry to provide 3-dimensional (3-D) frameworks for the adsorption of hydrogen molecules. These 3-D nanoengineered fibers physisorb twice as much hydrogen per unit surface area as do typical macroporous carbon materials. These fiber-based systems can have high density, and combined with the outstanding thermal conductivity of carbon nanotubes, this points a way toward solving the volumetric and heat-transfer constraints that limit some other hydrogen-storage supports.

18.
ACS Nano ; 13(3): 3474-3482, 2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30848881

RESUMO

Laser-induced graphene (LIG) has received much attention since it enables simple and rapid synthesis of porous graphene. This work presents a robust direct-write LIG-based gas sensor, which senses gases based on thermal conductivity, similar to a katharometer sensor. The gas sensors are fabricated by lasing polyimide substrates with a 10.6 µm CO2 laser to synthesize LIG. This enables the formation of flexible gas sensors which could be incorporated on a variety of surfaces. High surface area and thermal conductivity of the LIG results in rapid response times for all studied gases. The gas sensors are also embedded in cement to form a refractory composite material. These sensors are used to determine composition of various gas mixtures, such as N2 and CO2, which are the most abundant gaseous species in flue gas. Thus, LIG based embeddable sensors could be incorporated in composites to enable electronically functional construction materials.

19.
J Am Chem Soc ; 130(43): 14227-33, 2008 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-18826225

RESUMO

Ultraviolet (UV) irradiation of single wall carbon nanotubes (SWCNTs) individually dispersed in surfactants leads to diameter and type-selective photohydroxylation of the nanotubes. Photohydroxylation of first semiconductor and then small diameter metallic SWCNTs was confirmed after 254 nm UV irradiation in acidic, neutral, and basic aqueous solutions at ambient and elevated temperatures. The increased oxygen content of the SWCNTs after UV irradiation, as detected by X-ray photoelectron spectroscopy, suggests that SWCNTs were hydroxylated by reaction with water. Attenuated total reflectance Fourier transform infrared analysis provides evidence of hydroxyl functional groups on their surface. This photochemical reaction is impeded by molecular oxygen and appears to involve a reactive intermediate generated in the vicinity of semiconducting SWCNTs. This represents a noncontaminating selective reaction in the liquid phase that uses an intrinsic property of the tubes.

20.
Adv Mater ; 29(37)2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28737226

RESUMO

Wood as a renewable naturally occurring resource has been the focus of much research and commercial interests in applications ranging from building construction to chemicals production. Here, a facile approach is reported to transform wood into hierarchical porous graphene using CO2 laser scribing. Studies reveal that the crosslinked lignocellulose structure inherent in wood with higher lignin content is more favorable for the generation of high-quality graphene than wood with lower lignin content. Because of its high electrical conductivity (≈10 Ω per square), graphene patterned on wood surfaces can be readily fabricated into various high-performance devices, such as hydrogen evolution and oxygen evolution electrodes for overall water splitting with high reaction rates at low overpotentials, and supercapacitors for energy storage with high capacitance. The versatility of this technique in formation of multifunctional wood hybrids can inspire both research and industrial interest in the development of wood-derived graphene materials and their nanodevices.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa