Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Space Sci Rev ; 219(6): 46, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37636325

RESUMO

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation. The science objectives of the Europa Clipper mission include the characterization of Europa's interior; confirmation of the presence of a subsurface ocean; identification of constraints on the depth to this ocean, and on its salinity and thickness; and determination of processes of material exchange between the surface, ice shell, and ocean. Three broad categories of investigation are planned to interrogate different aspects of the subsurface structure and properties of the ice shell and ocean: magnetic induction, subsurface radar sounding, and tidal deformation. These investigations are supplemented by several auxiliary measurements. Alone, each of these investigations will reveal unique information. Together, the synergy between these investigations will expose the secrets of the Europan interior in unprecedented detail, an essential step in evaluating the habitability of this ocean world.

2.
Nature ; 450(7167): 178-9, 2007 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-17994076
3.
Science ; 362(6410)2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30287636

RESUMO

During 2017, the Cassini fluxgate magnetometer made in situ measurements of Saturn's magnetic field at distances ~2550 ± 1290 kilometers above the 1-bar surface during 22 highly inclined Grand Finale orbits. These observations refine the extreme axisymmetry of Saturn's internal magnetic field and show displacement of the magnetic equator northward from the planet's physical equator. Persistent small-scale magnetic structures, corresponding to high-degree (>3) axisymmetric magnetic moments, were observed. This suggests secondary shallow dynamo action in the semiconducting region of Saturn's interior. Some high-degree magnetic moments could arise from strong high-latitude concentrations of magnetic flux within the planet's deep dynamo. A strong field-aligned current (FAC) system is located between Saturn and the inner edge of its D-ring, with strength comparable to the high-latitude auroral FACs.

4.
Astrobiology ; 2(1): 93-103, 2002.
Artigo em Inglês | MEDLINE | ID: mdl-12449858

RESUMO

Liquid water, as far as we know, is an indispensable ingredient of life. Therefore, locating reservoirs of liquid water in extraterrestrial bodies is a necessary prerequisite to searching for life. Recent geological and geophysical observations from the Galileo spacecraft, though not unambiguous, hint at the possibility of a subsurface ocean in the Jovian moon Europa. After summarizing present evidence for liquid water in Europa, we show that electromagnetic and seismic observations made from as few as two surface observatories comprising a magnetometer and a seismometer offer the best hope of unambiguous characterization of the three-dimensional structure of the ocean and the deeper interior of this icy moon. The observatories would also help us infer the composition of the icy crust and the ocean water.


Assuntos
Júpiter , Água , Campos Eletromagnéticos
5.
Science ; 332(6034): 1186-9, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21566160

RESUMO

Extensive volcanism and high-temperature lavas hint at a global magma reservoir in Io, but no direct evidence has been available. We exploited Jupiter's rotating magnetic field as a sounding signal and show that the magnetometer data collected by the Galileo spacecraft near Io provide evidence of electromagnetic induction from a global conducting layer. We demonstrate that a completely solid mantle provides insufficient response to explain the magnetometer observations, but a global subsurface magma layer with a thickness of over 50 kilometers and a rock melt fraction of 20% or more is fully consistent with the observations. We also place a stronger upper limit of about 110 nanoteslas (surface equatorial field) on the dynamo dipolar field generated inside Io.

6.
Science ; 311(5766): 1391-2, 2006 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-16527963

RESUMO

Instruments on the Cassini spacecraft reveal that a heat source within Saturn's moon Enceladus powers a great plume of water ice particles and dust grains, a geyser that jets outward from the south polar regions and most likely serves as the dominant source of Saturn's E ring. The interaction of flowing magnetospheric plasma with the plume modifies the particle and field environment of Enceladus. The structure of Saturn's magnetosphere, the extended region of space threaded by magnetic-field lines linked to the planet, is shaped by the ion source at Enceladus, and magnetospheric dynamics may be affected by the rate at which fresh ions are created.


Assuntos
Saturno , Atmosfera/química , Meio Ambiente Extraterreno/química , Magnetismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa