RESUMO
Elastin-like peptides (ELPs) consist of distinctive repetitive sequences, such as (VPGVG) n, exhibit temperature-dependent reversible self-assembly (coacervation), and have been considered to be useful for the development of thermoresponsive materials. Further fundamental studies evaluating coacervative properties of novel nonlinear ELPs could present design concepts for new thermoresponsive materials. In this study, we prepared novel ELPs, cyclic (FPGVG) n (cyclo[FPGVG] n, n = 1-5), and analyzed their self-assembly properties and structural characteristics. Cyclo[FPGVG] n ( n = 3-5) demonstrated stronger coacervation capacity than the corresponding linear peptides. The coacervate of cyclo[FPGVG]5 was able to retain water-soluble dye molecules at 40 °C, which implied that cyclo[FPGVG]5 could be employed as a base material of DDS (drug delivery system) matrices and other biomaterials. The results of molecular dynamics simulations and circular dichroism measurements suggested that a certain chain length was required for cyclo[FPGVG] n to demonstrate alterations in molecular structure that were critical to the exhibition of coacervation.
Assuntos
Elastina/química , Peptídeos Cíclicos/química , Aminoácidos/química , Fragmentos de Peptídeos/química , Agregados ProteicosRESUMO
Protein phosphatase magnesium-dependent 1δ (PPM1D, Wip1) is a p53 inducible serine/threonine phosphatase. PPM1D is a promising target protein in cancer therapy since overexpression, missense mutations, truncating mutations, and gene amplification of PPM1D are reported in many tumors, including breast cancer and neuroblastoma. Herein, we report that a specific inhibitor, SL-176 that can be readily synthesized in 10 steps, significantly inhibits proliferation of a breast cancer cell line overexpressing PPM1D and induces G2/M arrest and apoptosis. SL-176 decreases PPM1D enzyme activity potently and specifically in vitro. These results demonstrate that SL-176 could be a useful lead compound in the development of effective anti-cancer agents.
Assuntos
Inibidores Enzimáticos/química , Fosfoproteínas Fosfatases/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Fosfoproteínas Fosfatases/metabolismo , Proteína Fosfatase 2C , Proteína Supressora de Tumor p53/metabolismoRESUMO
PPM1D is a p53-inducible Ser/Thr phosphatase. One of the main functions of PPM1D in normal cells is to act as a negative regulator of the p53 tumor suppressor by dephosphorylating p53 and several kinases. PPM1D is considered an oncoprotein owing to both its functions and the fact that gene amplification and overexpression of PPM1D are reported in several tumors. Recently, PPM1D mutations resulting in C-terminal truncated alterations were found in brainstem gliomas and colorectal cancers, and these mutations enhanced the activity of PPM1D. Therefore, C-terminal truncated PPM1D should be also considered as a potential candidate target of anticancer drugs. Here we showed that combination treatment with PPM1D-specific inhibitor SPI-001 and doxorubicin suppressed cell viability of HCT-116 cells overexpressing C-terminal truncated PPM1D through p53 activation compared with doxorubicin alone. Our results suggest that combination treatment with PPM1D inhibitor and doxorubicin may be a potential anti-cancer treatment in PPM1D-mutated cancer cells.
Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Doxorrubicina/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Antineoplásicos/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Doxorrubicina/química , Células HCT116 , Humanos , Mutação , Fenantrenos/química , Fenantrenos/farmacologia , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/genética , Proteína Fosfatase 2C , Proteína Supressora de Tumor p53/metabolismoRESUMO
An increase of nucleolar number and size has made nucleoli essential markers for cytology and tumour development. However, the underlying basis for their structural integrity and abundance remains unclear. Protein phosphatase PPM1D was found to be up-regulated in different carcinomas including breast cancers. Here, we demonstrate for the first time that PPM1D regulates nucleolar formation via inducing an increased phosphorylation of the nucleolar protein NPM. We show that PPM1D overexpression induces an increase in the nucleolar number regardless of p53 status. We also demonstrated that specific sequential phosphorylation of NPM is important for nucleolar formation and that PPM1D is a novel upstream regulator of this phosphorylation pathway. These results enhance our understanding of the molecular mechanisms that govern nucleoli formation by demonstrating that PPM1D regulates nucleolar formation by regulating NPM phosphorylation status through a novel signalling pathway, PPM1D-CDC25C-CDK1-PLK1.