Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Clin Infect Dis ; 76(3): e400-e408, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35616119

RESUMO

BACKGROUND: The Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible in vaccinated and unvaccinated populations. The dynamics that govern its establishment and propensity toward fixation (reaching 100% frequency in the SARS-CoV-2 population) in communities remain unknown. Here, we describe the dynamics of Omicron at 3 institutions of higher education (IHEs) in the greater Boston area. METHODS: We use diagnostic and variant-specifying molecular assays and epidemiological analytical approaches to describe the rapid dominance of Omicron following its introduction into 3 IHEs with asymptomatic surveillance programs. RESULTS: We show that the establishment of Omicron at IHEs precedes that of the state and region and that the time to fixation is shorter at IHEs (9.5-12.5 days) than in the state (14.8 days) or region. We show that the trajectory of Omicron fixation among university employees resembles that of students, with a 2- to 3-day delay. Finally, we compare cycle threshold values in Omicron vs Delta variant cases on college campuses and identify lower viral loads among college affiliates who harbor Omicron infections. CONCLUSIONS: We document the rapid takeover of the Omicron variant at IHEs, reaching near-fixation within the span of 9.5-12.5 days despite lower viral loads, on average, than the previously dominant Delta variant. These findings highlight the transmissibility of Omicron, its propensity to rapidly dominate small populations, and the ability of robust asymptomatic surveillance programs to offer early insights into the dynamics of pathogen arrival and spread.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Universidades , Boston
2.
Proc Natl Acad Sci U S A ; 117(41): 25722-25731, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32958655

RESUMO

Asymptomatic carriers of Plasmodium parasites hamper malaria control and eradication. Achieving malaria eradication requires ultrasensitive diagnostics for low parasite density infections (<100 parasites per microliter blood) that work in resource-limited settings (RLS). Sensitive point-of-care diagnostics are also lacking for nonfalciparum malaria, which is characterized by lower density infections and may require additional therapy for radical cure. Molecular methods, such as PCR, have high sensitivity and specificity, but remain high-complexity technologies impractical for RLS. Here we describe a CRISPR-based diagnostic for ultrasensitive detection and differentiation of Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, and Plasmodium malariae, using the nucleic acid detection platform SHERLOCK (specific high-sensitivity enzymatic reporter unlocking). We present a streamlined, field-applicable, diagnostic comprised of a 10-min SHERLOCK parasite rapid extraction protocol, followed by SHERLOCK for 60 min for Plasmodium species-specific detection via fluorescent or lateral flow strip readout. We optimized one-pot, lyophilized, isothermal assays with a simplified sample preparation method independent of nucleic acid extraction, and showed that these assays are capable of detection below two parasites per microliter blood, a limit of detection suggested by the World Health Organization. Our P. falciparum and P. vivax assays exhibited 100% sensitivity and specificity on clinical samples (5 P. falciparum and 10 P. vivax samples). This work establishes a field-applicable diagnostic for ultrasensitive detection of asymptomatic carriers as well as a rapid point-of-care clinical diagnostic for nonfalciparum malaria species and low parasite density P. falciparum infections.


Assuntos
Portador Sadio/diagnóstico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas e Procedimentos Diagnósticos , Técnicas Genéticas , Malária/diagnóstico , Plasmodium/genética , Plasmodium/isolamento & purificação , Portador Sadio/parasitologia , Humanos , Malária/parasitologia , Plasmodium/classificação , Plasmodium/fisiologia
3.
Anal Chem ; 94(9): 3956-3962, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35199994

RESUMO

Quantitative nucleic acid amplification testing (NAAT) is a key enabling technology for infectious disease management, especially in instances where viral load informs therapeutic decisions. Inadequate access to quantitative NAATs remains a challenge to the successful deployment of antiretroviral therapy (ART) regimens for patients with chronic hepatitis B virus (CHB) in low resourced settings (LRS). Current field-deployable NAATs are generally qualitative (yes/no) rather than quantitative in nature, making them ill-suited for viral load monitoring programs for CHB patients. Here, we report the development of a proof-of-concept molecular diagnostic test, the semiquantitative ligation and amplification (SQLA) assay, which achieves semiquantitative detection of input target DNA at two independently tunable detection thresholds with a simple visual readout. The SQLA assay utilizes a duplex competitive thermophilic helicase-dependent amplification (tHDA) chemistry and can be performed in under 1 h.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , Imunoensaio , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/virologia , Humanos , Técnicas de Diagnóstico Molecular , Ácidos Nucleicos/análise , Ácidos Nucleicos/genética
4.
Acc Chem Res ; 54(20): 3772-3779, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34612619

RESUMO

Disease prevalence is highest in low-resource settings (LRS) due to the lack of funds, infrastructure, and personnel required to carry out laboratory-based molecular tests. In high-resource settings, gold-standard molecular tests for diseases consist of nucleic acid amplification tests (NAATs) due to their excellent sensitivity and specificity. These tests require the extraction, amplification, and detection of nucleic acids from clinical samples. In high-resource settings, all three of these steps require highly specialized, costly, and onerous equipment that cannot be used in LRS. Nucleic acid extraction involves multiple centrifugation steps. Amplification consists of the polymerase chain reaction (PCR), which requires thermal cyclers. The detection of amplified DNA is typically done with specialized thermal cyclers that are capable of fluorescence detection. Traditional methods used to extract, amplify, and detect nucleic acids cannot be used outside of a laboratory in LRS. Thus, there is a need for affordable point-of-care devices to ease the high burden of disease in LRS.The past decade of work on paper-based fluidic devices has resulted in the invention of many paper-based biosensors for disease detection as well as isothermal amplification techniques that replace PCR. However, a challenge still remains in detecting pathogenic biomarkers from complex human samples without specialized laboratory equipment. Our research has focused on the development of affordable technologies to extract and detect nucleic acids in clinical samples with minimal equipment. Here we describe methods for the paper-based extraction, amplification, and detection of nucleic acids. This Account provides an overview of our latest technologies developed to detect an array of diseases in low-resource settings. We focus on detecting nucleic acids of H1N1, human papillomavirus (HPV), Neisseria gonorrheae (NG), Chlamydia trachomatis (CT), Trichomonas vaginalis (TV), and malaria from a variety of clinical sample types. H1N1 RNA was extracted from nasopharyngeal swabs; HPV, NG, and CT DNA were extracted from either cervical, urethral, or vaginal swabs; TV DNA was extracted from urine; and malaria DNA was extracted from whole blood. Different sample types necessitate different nucleic extraction protocols; we provide guidelines for assay design based on the clinical sample type used. We compare the pros and cons of different isothermal amplification techniques, namely, helicase-dependent amplification (HDA), loop-mediated isothermal amplification (LAMP), and a novel isothermal amplification technique that we developed: isothermal-identical multirepeat sequences (iso-IMRS). Finally, we compare various detection mechanisms, including lateral-flow and electrochemical readouts. Electrochemical readouts frequently employ gold electrodes due to strong gold-thiol coupling. However, the high cost of gold precludes their use in LRS. We discuss our development of novel gold leaf electrodes that can be made without specialized equipment for a fraction of the cost of commercially available gold electrodes.


Assuntos
Doenças Transmissíveis/diagnóstico , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , Reação em Cadeia da Polimerase , Humanos
5.
Anal Chem ; 93(4): 2097-2105, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33464825

RESUMO

In many countries targeting malaria elimination, persistent malaria infections can have parasite loads significantly below the lower limit of detection (LLOD) of standard diagnostic techniques, making them difficult to identify and treat. The most sensitive diagnostic methods involve amplification and detection of Plasmodium DNA by polymerase chain reaction (PCR), which requires expensive thermal cycling equipment and is difficult to deploy in resource-limited settings. Isothermal DNA amplification assays have been developed, but they require complex primer design, resulting in high nonspecific amplification, and show a decrease in sensitivity than PCR methods. Here, we have used a computational approach to design a novel isothermal amplification assay with a simple primer design to amplify P. falciparum DNA with analytical sensitivity comparable to PCR. We have identified short DNA sequences repeated throughout the parasite genome to be used as primers for DNA amplification and demonstrated that these primers can be used, without modification, to isothermally amplify P. falciparum parasite DNA via strand displacement amplification. Our novel assay shows a LLOD of ∼1 parasite/µL within a 30 min amplification time. The assay was demonstrated with clinical samples using patient blood and saliva. We further characterized the assay using direct amplicon next-generation sequencing and modified the assay to work with a visual readout. The technique developed here achieves similar analytical sensitivity to current gold standard PCR assays requiring a fraction of time and resources for PCR. This highly sensitive isothermal assay can be more easily adapted to field settings, making it a potentially useful tool for malaria elimination.


Assuntos
DNA de Protozoário/genética , Malária Falciparum/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Sequências Repetitivas de Ácido Nucleico/genética , DNA de Protozoário/isolamento & purificação , Humanos , Limite de Detecção , Plasmodium falciparum/isolamento & purificação , Reprodutibilidade dos Testes
6.
Biomed Microdevices ; 20(2): 35, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29644437

RESUMO

Globally, the microbe Neisseria gonorrhoeae (NG) causes 106 million newly documented sexually transmitted infections each year. Once appropriately diagnosed, NG infections can be readily treated with antibiotics, but high-risk patients often do not return to the clinic for treatment if results are not provided at the point of care. A rapid, sensitive molecular diagnostic would help increase NG treatment and reduce the prevalence of this sexually transmitted disease. Here, we report on the design and development of a rapid, highly sensitive, paperfluidic device for point-of-care diagnosis of NG. The device integrates patient swab sample lysis, nucleic acid extraction, thermophilic helicase-dependent amplification (tHDA), an internal amplification control (NGIC), and visual lateral flow detection within an 80 min run time. Limits of NG detection for the NG/NGIC multiplex tHDA assay were determined within the device, and clinical performance was validated retroactively against qPCR-quantified patient samples in a proof-of-concept study. This paperfluidic diagnostic has a clinically relevant limit of detection of 500 NG cells per device with analytical sensitivity down to 10 NG cells per device. In triplicate testing of 40 total urethral and vaginal swab samples, the device had 95% overall sensitivity and 100% specificity, approaching current laboratory-based molecular NG diagnostics. This diagnostic platform could increase access to accurate NG diagnoses to those most in need.


Assuntos
Dispositivos Lab-On-A-Chip , Neisseria gonorrhoeae/isolamento & purificação , Papel , Testes Imediatos , DNA Bacteriano/genética , Humanos , Neisseria gonorrhoeae/genética
7.
Anal Chem ; 88(16): 8026-35, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27429301

RESUMO

Traditional methods for identifying pathogens in bacteremic patients are slow (24-48+ h). This can lead to physicians making treatment decisions based on an incomplete diagnosis and potentially increasing the patient's mortality risk. To decrease time to diagnosis, we have developed a novel technology that can recover viable bacteria directly from whole blood and identify them in less than 7 h. Our technology combines a sample preparation process with surface-enhanced Raman spectroscopy (SERS). The sample preparation process enriches viable microorganisms from 10 mL of whole blood into a 200 µL aliquot. After a short incubation period, SERS is used to identify the microorganisms. We further demonstrated that SERS can be used as a broad detection method, as it identified a model set of 17 clinical blood culture isolates and microbial reference strains with 100% identification agreement. By applying the integrated technology of sample preparation and SERS to spiked whole blood samples, we were able to correctly identify both Staphylococcus aureus and Escherichia coli 97% of the time with 97% specificity and 88% sensitivity.


Assuntos
Escherichia coli/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Humanos , Análise Espectral Raman/instrumentação , Propriedades de Superfície
8.
Anal Chem ; 87(15): 7872-9, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26125635

RESUMO

The 2009 Influenza A (H1N1) pandemic disproportionately affected the developing world and highlighted the key inadequacies of traditional diagnostic methods that make them unsuitable for use in resource-limited settings, from expensive equipment and infrastructure requirements to unacceptably long turnaround times. While rapid immunoassay diagnostic tests were much less costly and more context-appropriate, they suffered from drastically low sensitivities and high false negative rates. An accurate, sensitive, and specific molecular diagnostic that is also rapid, low-cost, and independent of laboratory infrastructure is needed for effective point-of-care detection and epidemiological control in these developing regions. We developed a paper-based assay that allows for the extraction and purification of RNA directly from human clinical nasopharyngeal specimens through a poly(ether sulfone) paper matrix, H1N1-specific in situ isothermal amplification directly within the same paper matrix, and immediate visual detection on lateral flow strips. The complete sample-to-answer assay can be performed at the point-of-care in just 45 min, without the need for expensive equipment or laboratory infrastructure, and it has a clinically relevant viral load detection limit of 10(6) copies/mL, offering a 10-fold improvement over current rapid immunoassays.


Assuntos
Técnicas Genéticas , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/diagnóstico , RNA/genética , Técnicas Genéticas/economia , Técnicas Genéticas/instrumentação , Técnicas Genéticas/normas , Humanos , Vírus da Influenza A Subtipo H1N1/química , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Limite de Detecção , Papel , Sistemas Automatizados de Assistência Junto ao Leito , RNA/química
9.
Anal Chem ; 86(24): 11981-5, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25419873

RESUMO

We report the first demonstration of using heat on a paper device to rapidly concentrate a clinically relevant analyte of interest from a biological fluid. Our technology relies on the application of localized heat to a paper strip to evaporate off hundreds of microliters of liquid to concentrate the target analyte. This method can be used to enrich for a target analyte that is present at low concentrations within a biological fluid to enhance the sensitivity of downstream detection methods. We demonstrate our method by concentrating the tuberculosis-specific glycolipid, lipoarabinomannan (LAM), a promising urinary biomarker for the detection and diagnosis of tuberculosis. We show that the heat does not compromise the subsequent immunodetectability of LAM, and in 20 min, the tuberculosis biomarker was concentrated by nearly 20-fold in simulated urine. Our method requires only 500 mW of power, and sample flow is self-driven via capillary action. As such, our technology can be readily integrated into portable, battery-powered, instrument-free diagnostic devices intended for use in low-resource settings.


Assuntos
Líquidos Corporais/química , Técnicas de Química Analítica/métodos , Papel , Tuberculose/urina , Urinálise/métodos , Biomarcadores/sangue , Biomarcadores/urina , Temperatura Alta , Humanos , Lipopolissacarídeos/sangue , Lipopolissacarídeos/urina , Reprodutibilidade dos Testes
10.
Heliyon ; 10(6): e27344, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533083

RESUMO

Background: Curable sexually transmitted infections (STIs), such as Neisseria gonorrhoeae (N. gonorrhoeae), are a major cause of poor pregnancy outcomes. The infection is often asymptomatic in pregnant women, and a syndrome-based approach of testing leads to a missed diagnosis. Culture followed by microscopy is inadequate and time-consuming. The gold standard nucleic acid amplification tests require advanced infrastructure settings, whereas point-of-care tests are limited to immunoassays with sensitivities and specificities insufficient to accurately diagnose asymptomatic cases. This necessitates the development and validation of assays that are fit for purpose. Methods: We identified new diagnostic target biomarker regions for N. gonorrhoeae using an algorithm for genome mining of identical multi-repeat sequences (IMRS). These were then developed as DNA amplification primers to design better diagnostic assays. To test the primer pair, genomic DNA was 10-fold serially diluted (100 pg/µL to 1 × 10-3 pg/µL) and used as DNA template for PCR reactions. The gold standard PCR using 16S rRNA primers was also run as a comparative test, and both assay products were resolved on 1% agarose gel. Results: Our newly developed N. gonorrhoeae IMRS-PCR assay had an analytical sensitivity of 6 fg/µL representing better sensitivity than the 16S rRNA PCR assay with an analytical sensitivity of 4.3096 pg/µL. The assay was also successfully validated using clinical urethral swab samples. We further advanced this technique by developing an isothermal IMRS, which was both reliable and sensitive for detecting cultured N. gonorrhoeae isolates at a concentration of 38 ng/µL. Combining isothermal IMRS with a low-cost lateral flow assay, we were able to detect N. gonorrhoeae amplicons at a starting concentration of 100 pg/µL. Conclusion: Therefore, there is a potential to implement this concept within miniaturized, isothermal, microfluidic platforms, and laboratory-on-a-chip diagnostic devices for highly reliable point-of-care testing.

11.
Lab Chip ; 23(5): 1410-1419, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602146

RESUMO

Gold electrodes are some of the most prevalent electrochemical biosensor substrate materials because they are readily functionalized with thiolated biomolecules. Yet, conventional methods to fabricate gold electrodes are costly and require onerous equipment, precluding them from implementation in low-resource settings (LRS). Recently, a number of alternative gold electrode fabrication methods have been developed to simplify and lower the cost of manufacturing. These methods include screen and inkjet printing as well as physical fabrication with common materials such as wire or gold leaf. All electrodes generated with these methods have successfully been functionalized with thiolated molecules, demonstrating their suitability for use in biosensors. Here, we detail recent advances in the fabrication, characterization and functionalization of these next-generation gold electrodes, with an emphasis on comparisons between cost and complexity with traditional cleanroom fabrication. We highlight gold leaf electrodes for their potential in LRS. This class of electrodes is anticipated to be broadly applicable beyond LRS due to their numerous inherent advantages.


Assuntos
Técnicas Biossensoriais , Ouro , Ouro/química , Eletrodos , Impressão , Técnicas Eletroquímicas
12.
Anal Chem ; 84(3): 1336-44, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22240089

RESUMO

Cells of biomedical interest are, despite their functional significance, often present in very small numbers. Therefore the analysis and isolation of previously inaccessible rare cells, such as peripheral hematopoietic stem cells, endothelial progenitor cells, or circulating tumor cells, require efficient, sensitive, and specific procedures that do not compromise the viability of the cells. The current study builds on previous work on a rationally designed microfluidic magnetophoretic cell separation platform capable of throughputs of 240 µL min(-1). Proof-of-concept was first conducted using MCF-7 (1-1000 total cells) as the target rare cell spiked into high concentrations of Raji B-lymphocyte nontarget cells (~10(6) total cells). These experiments lead to the establishment of a magnet-based separation for the isolation of 50 MCF-7 cells directly from whole blood. Results show an efficiency of collection greater than 85%, with a purity of over 90%. Next, resident endothelial progenitor cells and hematopoietic stem cells are directly isolated from whole human blood in a rapid and efficient fashion (>96%). Both cell populations could be simultaneously isolated and, via immunofluorescent staining, individually identified and enumerated. Overall, the presented device illustrates a viable separation platform for high purity, efficient, and rapid collection of rare cell populations directly from whole blood samples.


Assuntos
Separação Imunomagnética , Técnicas Analíticas Microfluídicas , Células Cultivadas , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células Neoplásicas Circulantes/metabolismo , RNA/análise , RNA/isolamento & purificação , Células-Tronco/citologia , Células-Tronco/metabolismo
13.
ACS Meas Sci Au ; 2(2): 91-95, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479101

RESUMO

Electrochemical biosensors are promising technologies for detection and monitoring in low-resource settings due to their potential for easy use and low-cost instrumentation. Disposable gold screen-printed electrodes (SPEs) are popular substrates for these biosensors, but necessary dopants in the ink used for their production can interfere with biosensor function and contribute to the heterogeneity of these electrodes. We recently reported an alternative disposable gold electrode made from gold leaf generated using low-cost, equipment-free fabrication. We have directly compared the surface topology, biorecognition element deposition, and functional performance of three disposable gold electrodes: our gold leaf electrodes and two commercial SPEs. Our leaf electrodes significantly outperformed the SPEs for reproducible and effective biosensing in a DNase I assay and are nearly an order of magnitude less expensive than the SPEs. Therefore, these electrodes are promising for further development as point-of-care diagnostics, especially in low-resource settings.

14.
ACS Omega ; 7(7): 5804-5808, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35224340

RESUMO

Progesterone monitoring is an essential component of in vitro fertilization treatments and reproductive management of dairy cows. Gold-standard biosensors for progesterone monitoring rely on antibodies, which are expensive and difficult to procure. We have developed an alternative transcription factor-based sensor that is superior to conventional progesterone biosensors. Here, we incorporate this transcription factor-based progesterone sensor into an affordable, portable paperfluidic format to facilitate widespread implementation of progesterone monitoring at the point of care. Oligonucleotides labeled with a fluorescent dye are immobilized onto nitrocellulose via a biotin-streptavidin interaction. In the absence of progesterone, these oligonucleotides form a complex with a transcription factor that is fluorescently labeled with tdTomato. In the presence of progesterone, the fluorescent transcription factor unbinds from the immobilized DNA, resulting in a decrease in tdTomato fluorescence. The limit of detection of our system is 27 nm, which is a clinically relevant level of progesterone. We demonstrate that transcription factor-based sensors can be incorporated into paperfluidic devices, thereby making them accessible to a broader population due to the portability and affordability of paper-based devices.

15.
ACS Sens ; 7(4): 1132-1137, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35412319

RESUMO

We describe an electrochemical strategy to transduce allosteric transcription factor (aTF) binding affinity to sense steroid hormones. Our approach utilizes square wave voltammetry to monitor changes in current output as a progesterone (PRG)-specific aTF (SRTF1) unbinds from the cognate DNA sequence in the presence of PRG. The sensor detects PRG in artificial urine samples with sufficient sensitivity suitable for clinical applications. Our results highlight the capability of using aTFs as the biorecognition elements to develop electrochemical point-of-care biosensors for the detection of small-molecule biomarkers and analytes.


Assuntos
Técnicas Biossensoriais , Progesterona , Sequência de Bases , Técnicas Biossensoriais/métodos , DNA/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
PLoS One ; 17(7): e0270694, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830378

RESUMO

At our university based high throughput screening program, we test all members of our community weekly using RT-qPCR. RT-qPCR cycle threshold (CT) values are inversely proportional to the amount of viral RNA in a sample and are a proxy for viral load. We hypothesized that CT values would be higher, and thus the viral loads at the time of diagnosis would be lower, in individuals who were infected with the virus but remained asymptomatic throughout the course of the infection. We collected the N1 and N2 target gene CT values from 1633 SARS-CoV-2 positive RT-qPCR tests of individuals sampled between August 7, 2020, and March 18, 2021, at the BU Clinical Testing Laboratory. We matched this data with symptom reporting data from our clinical team. We found that asymptomatic patients had CT values significantly higher than symptomatic individuals on the day of diagnosis. Symptoms were followed by the clinical team for 10 days post the first positive test. Within the entire population, 78.1% experienced at least one symptom during surveillance by the clinical team (n = 1276/1633). Of those experiencing symptoms, the most common symptoms were nasal congestion (73%, n = 932/1276), cough (60.0%, n = 761/1276), fatigue (59.0%, n = 753/1276), and sore throat (53.1%, n = 678/1276). The least common symptoms were diarrhea (12.5%, n = 160/1276), dyspnea on exertion (DOE) (6.9%, n = 88/1276), foot or skin changes (including rash) (4.2%, n = 53/1276), and vomiting (2.1%, n = 27/1276). Presymptomatic individuals, those who were not symptomatic on the day of diagnosis but became symptomatic over the following 10 days, had CT values higher for both N1 (median = 27.1, IQR 20.2-32.9) and N2 (median = 26.6, IQR 20.1-32.8) than the symptomatic group N1 (median = 21.8, IQR 17.2-29.4) and N2 (median = 21.4, IQR 17.3-28.9) but lower than the asymptomatic group N1 (median = 29.9, IQR 23.6-35.5) and N2 (median = 30.0, IQR 23.1-35.7). This study supports the hypothesis that viral load in the anterior nares on the day of diagnosis is a measure of disease intensity at that time.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Humanos , SARS-CoV-2/genética , Tomografia Computadorizada por Raios X , Universidades , Carga Viral
17.
SLAS Technol ; 27(5): 302-311, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718332

RESUMO

In 2019, the first cases of SARS-CoV-2 were detected in Wuhan, China, and by early 2020 the first cases were identified in the United States. SARS-CoV-2 infections increased in the US causing many states to implement stay-at-home orders and additional safety precautions to mitigate potential outbreaks. As policies changed throughout the pandemic and restrictions lifted, there was an increase in demand for COVID-19 testing which was costly, difficult to obtain, or had long turn-around times. Some academic institutions, including Boston University (BU), created an on-campus COVID-19 screening protocol as part of a plan for the safe return of students, faculty, and staff to campus with the option for in-person classes. At BU, we put together an automated high-throughput clinical testing laboratory with the capacity to run 45,000 individual tests weekly by Fall of 2020, with a purpose-built clinical testing laboratory, a multiplexed reverse transcription PCR (RT-qPCR) test, robotic instrumentation, and trained staff. There were many challenges including supply chain issues for personal protective equipment and testing materials in addition to equipment that were in high demand. The BU Clinical Testing Laboratory (CTL) was operational at the start of Fall 2020 and performed over 1 million SARS-CoV-2 PCR tests during the 2020-2021 academic year.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Humanos , Pandemias/prevenção & controle , Reação em Cadeia da Polimerase em Tempo Real/métodos , Estados Unidos
18.
Biomed Microdevices ; 13(3): 599-602, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21369762

RESUMO

In the original manuscript, we reported the demonstration of an integrated microfluidic chip that performed helicase dependent amplification (HDA) on samples containing live bacteria. Bacterial lysis, nucleic acid extraction, and DNA amplification with a fluorescent reporter were incorporated into a disposable polymer cartridge format. We reported that the device was able to detect as few as 10 colony-forming units (CFU) of E. coli in growth medium. While the main conclusions of the original paper remain sound, the data presented in support of those conclusions contained errors that we detail, discuss and correct here. In short, we misidentified a non-specific product as a specific product of our HDA reaction. We incorrectly called reactions containing the non-specific product (length 70 bp) positive. Further investigation demonstrated that our primer set was faulty and not capable of amplifying the specific product. Here we redesigned primers, sequenced all of the products and reran all of the experiments reported previously to generate a new, verified dataset.


Assuntos
DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Equipamentos Descartáveis , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Integração de Sistemas , DNA Bacteriano/metabolismo , Escherichia coli O157/genética , Escherichia coli O157/isolamento & purificação
19.
ACS Cent Sci ; 7(6): 963-972, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34235257

RESUMO

Sexually transmitted infections, including the human immunodeficiency virus (HIV) and the human papillomavirus (HPV), disproportionally impact those in low-resource settings. Early diagnosis is essential for managing HIV. Similarly, HPV causes nearly all cases of cervical cancer, the majority (90%) of which occur in low-resource settings. Importantly, infection with HPV is six times more likely to progress to cervical cancer in women who are HIV-positive. An inexpensive, adaptable point-of-care test for viral infections would make screening for these viruses more accessible to a broader set of the population. Here, we report a novel, cost-effective electrochemical platform using gold leaf electrodes to detect clinically relevant viral loads. We have combined this platform with loop-mediated isothermal amplification and a CRISPR-based recognition assay to detect HPV. Lower limits of detection were demonstrated down to 104 total copies of input nucleic acids, which is a clinically relevant viral load for HPV DNA. Further, proof-of-concept experiments with cervical swab samples, extracted using standard extraction protocols, demonstrated that the strategy is extendable to complex human samples. This adaptable technology could be applied to detect any viral infection rapidly and cost-effectively.

20.
Cell Rep Methods ; 1(1): 100005, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34235497

RESUMO

Asymptomatic surveillance testing together with COVID-19-related research can lead to positive SARS-CoV-2 tests resulting not from true infections, but non-infectious, non-hazardous by-products of research (amplicons). Amplicons can be widespread and persistent in lab environments and can be difficult to distinguish for true infections. We discuss prevention and mitigation strategies.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Laboratórios , Teste para COVID-19
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa