Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 300(3): 105668, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272232

RESUMO

G protein-coupled receptors (GPCRs) are the largest family of cell surface receptors and a critical class of regulators of mammalian physiology. Also known as seven transmembrane receptors (7TMs), GPCRs are ubiquitously expressed and versatile, detecting a diverse set of endogenous stimuli, including odorants, neurotransmitters, hormones, peptides, and lipids. Accordingly, GPCRs have emerged as the largest class of drug targets, accounting for upward of 30% of all prescription drugs. The view that ligand-induced GPCR responses originate exclusively from the cell surface has evolved to reflect accumulating evidence that receptors can elicit additional waves of signaling from intracellular compartments. These events in turn shape unique cellular and physiological outcomes. Here, we discuss our current understanding of the roles and regulation of compartmentalized GPCR signaling.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Animais , Membrana Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Espaço Intracelular/metabolismo , Ativação Enzimática
2.
bioRxiv ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38948806

RESUMO

G protein-coupled receptors (GPCRs) modulate various physiological functions by re-wiring cellular gene expression in response to extracellular signals. Control of gene expression by GPCRs has been studied almost exclusively at the transcriptional level, neglecting an extensive amount of regulation that takes place translationally. Hence, little is known about the nature and mechanisms of gene-specific post-transcriptional regulation downstream of receptor activation. Here, we apply an unbiased multiomics approach to delineate an extensive translational regulatory program initiated by the prototypical beta2-adrenergic receptor (ß2-AR) and provide mechanistic insights into how these processes are orchestrated. Using ribosome profiling (Ribo-seq), we identify nearly 120 novel gene targets of adrenergic receptor activity which expression is exclusively regulated at the level of translation. We next show that all translational changes are induced selectively by endosomal ß2-ARs. We further report that this proceeds through activation of the mammalian target of rapamycin (mTOR) pathway. Specifically, within the set of translational GPCR targets we discover significant enrichment of genes with 5' terminal oligopyrimidine (TOP) motifs, a gene class classically known to be translationally regulated by mTOR. We then demonstrate that endosomal ß2-ARs are required for mTOR activation and subsequent mTOR-dependent TOP mRNA translation. Together, this comprehensive analysis of drug-induced translational regulation establishes a critical role for location-biased GPCR signaling in fine-tuning the cellular protein landscape.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa