Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Blood ; 136(7): 831-844, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32457985

RESUMO

The defined location of a stem cell within a niche regulates its fate, behavior, and molecular identity via a complex extrinsic regulation that is far from being fully elucidated. To explore the molecular characteristics and key components of the aortic microenvironment, where the first hematopoietic stem cells are generated during development, we performed genome-wide RNA tomography sequencing on zebrafish, chicken, mouse, and human embryos. The resulting anterior-posterior and dorsal-ventral transcriptional maps provided a powerful resource for exploring genes and regulatory pathways active in the aortic microenvironment. By performing interspecies comparative RNA sequencing analyses and functional assays, we explored the complexity of the aortic microenvironment landscape and the fine-tuning of various factors interacting to control hematopoietic stem cell generation, both in time and space in vivo, including the ligand-receptor couple ADM-RAMP2 and SVEP1. Understanding the regulatory function of the local environment will pave the way for improved stem cell production in vitro and clinical cell therapy.


Assuntos
Aorta/embriologia , Células-Tronco Hematopoéticas/citologia , RNA/análise , Nicho de Células-Tronco/genética , Tomografia , Animais , Animais Geneticamente Modificados , Aorta/citologia , Rastreamento de Células/métodos , Embrião de Galinha , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Especificidade da Espécie , Tomografia/métodos , Tomografia/veterinária , Peixe-Zebra/embriologia , Peixe-Zebra/genética
2.
Dev Biol ; 428(2): 318-327, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28728681

RESUMO

Hematopoietic stem cells (HSCs) are at the origin of adult hematopoiesis, providing an organism with all blood cell types needed throughout life. During embryonic development a first wave of hematopoiesis (independent of HSCs) allows the survival and growth of the embryo until birth. A second wave of hematopoiesis that will last into adulthood depends on the production of HSCs that begins at mid-gestation in large arteries such as the aorta. HSC production occurs through a hemogenic endothelial to hematopoietic transition (EHT) process and the formation of hematopoietic clusters in most vertebrate species. Advances in understanding EHT, cluster formation and HSC production were triggered by combined progresses made in the development of in vivo assays, microscopy, imaging and fluorescence tools. Here, we review the current knowledge on developmental hematopoiesis with a focus on the first step of HSC production in the aorta and how microscopic approaches have contributed to a better understanding of the vital process of blood cell formation.


Assuntos
Desenvolvimento Embrionário/fisiologia , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/citologia , Animais , Biologia do Desenvolvimento/história , História do Século XIX , História do Século XX , História do Século XXI , História Antiga , História Medieval , Humanos , Microscopia/história , Pesquisa com Células-Tronco/história
3.
Blood ; 125(3): 465-9, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25301706

RESUMO

Clusters of cells attached to the endothelium of the main embryonic arteries were first observed a century ago. Present in most vertebrate species, such clusters, or intraaortic hematopoietic clusters (IAHCs), derive from specialized hemogenic endothelial cells and contain the first few hematopoietic stem cells (HSCs) generated during embryonic development. However, some discrepancies remained concerning the spatio-temporal appearance and the numbers of IAHCs and HSCs. Therefore, the exact cell composition and function of IAHCs remain unclear to date. We show here that IAHCs contain pre-HSCs (or HSC precursors) that can mature into HSCs in vivo (as shown by the successful long-term multilineage reconstitution of primary neonates and secondary adult recipients). Such IAHC pre-HSCs could contribute to the HSC pool increase observed at midgestation. The novel insights in pre-HSC to HSC transition represent an important step toward generating transplantable HSCs in vitro that are needed for autologous HSC transplantation therapies.


Assuntos
Aorta/embriologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Animais , Feminino , Camundongos , Técnicas de Cultura de Órgãos
4.
Amino Acids ; 48(8): 1751-74, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27318991

RESUMO

There is an increasing body of evidence for local circuits of ATP generation and consumption that are largely independent of global cellular ATP levels. These are mostly based on the formation of multiprotein(-lipid) complexes and diffusion limitations existing in cells at different levels of organization, e.g., due to the viscosity of the cytosolic medium, macromolecular crowding, multiple and bulky intracellular structures, or controlled permeability across membranes. Enzymes generating ATP or GTP are found associated with ATPases and GTPases enabling the direct fueling of these energy-dependent processes, and thereby implying that it is the local and not the global concentration of high-energy metabolites that is functionally relevant. A paradigm for such microcompartmentation is creatine kinase (CK). Cytosolic and mitochondrial isoforms of CK constitute a well established energy buffering and shuttling system whose functions are very much based on local association of CK isoforms with ATP-providing and ATP-consuming processes. Here we review current knowledge on the subcellular localization and direct protein and lipid interactions of CK isoforms, in particular about cytosolic brain-type CK (BCK) much less is known compared to muscle-type CK (MCK). We further present novel data on BCK, based on three different experimental approaches: (1) co-purification experiments, suggesting association of BCK with membrane structures such as synaptic vesicles and mitochondria, involving hydrophobic and electrostatic interactions, respectively; (2) yeast-two-hybrid analysis using cytosolic split-protein assays and the identifying membrane proteins VAMP2, VAMP3 and JWA as putative BCK interaction partners; and (3) phosphorylation experiments, showing that the cellular energy sensor AMP-activated protein kinase (AMPK) is able to phosphorylate BCK at serine 6 to trigger BCK localization at the ER, in close vicinity of the highly energy-demanding Ca(2+) ATPase pump. Thus, membrane localization of BCK seems to be an important and regulated feature for the fueling of membrane-located, ATP-dependent processes, stressing again the importance of local rather than global ATP concentrations.


Assuntos
Creatina Quinase Forma BB/metabolismo , Metabolismo Energético/fisiologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Creatina Quinase Forma MM/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Citosol/enzimologia , Humanos , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Transporte Proteico/fisiologia
5.
Biochim Biophys Acta ; 1837(8): 1271-83, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24727412

RESUMO

AMP-activated protein kinase (AMPK) and cytosolic brain-type creatine kinase (BCK) cooperate under energy stress to compensate for loss of adenosine triphosphate (ATP) by either stimulating ATP-generating and inhibiting ATP-consuming pathways, or by direct ATP regeneration from phosphocreatine, respectively. Here we report on AMPK-dependent phosphorylation of BCK from different species identified by in vitro screening for AMPK substrates in mouse brain. Mass spectrometry, protein sequencing, and site-directed mutagenesis identified Ser6 as a relevant residue with one site phosphorylated per BCK dimer. Yeast two-hybrid analysis revealed interaction of active AMPK specifically with non-phosphorylated BCK. Pharmacological activation of AMPK mimicking energy stress led to BCK phosphorylation in astrocytes and fibroblasts, as evidenced with a highly specific phospho-Ser6 antibody. BCK phosphorylation at Ser6 did not affect its enzymatic activity, but led to the appearance of the phosphorylated enzyme at the endoplasmic reticulum (ER), close to the ER calcium pump, a location known for muscle-type cytosolic creatine kinase (CK) to support Ca²âº-pumping.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Encéfalo/enzimologia , Creatina Quinase/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Astrócitos/metabolismo , Astrócitos/ultraestrutura , Encéfalo/ultraestrutura , Creatina Quinase/genética , Citosol/metabolismo , Camundongos , Complexos Multienzimáticos/metabolismo , Mutagênese Sítio-Dirigida , Fosforilação , Serina/metabolismo
6.
Cell Rep ; 39(11): 110957, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35705037

RESUMO

Hematopoietic stem cells (HSCs) express a large variety of cell surface receptors that are associated with acquisition of self-renewal and multipotent properties. Correct expression of these receptors depends on a delicate balance between cell surface trafficking, recycling, and degradation and is controlled by the microtubule network and Golgi apparatus, whose roles have hardly been explored during embryonic/fetal hematopoiesis. Here we show that, in the absence of CLASP2, a microtubule-associated protein, the overall production of HSCs is reduced, and the produced HSCs fail to self-renew and maintain their stemness throughout mouse and zebrafish development. This phenotype can be attributed to decreased cell surface expression of the hematopoietic receptor c-Kit, which originates from increased lysosomal degradation in combination with a reduction in trafficking to the plasma membrane. A dysfunctional Golgi apparatus in CLASP2-deficient HSCs seems to be the underlying cause of the c-Kit expression and signaling imbalance.


Assuntos
Células-Tronco Hematopoéticas , Peixe-Zebra , Animais , Camundongos , Hematopoese/genética , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
7.
Am J Respir Cell Mol Biol ; 45(3): 534-41, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21177980

RESUMO

Dendritic cells (DCs) are essential for innate and adaptive immunity, but are purported to exhibit variable radiosensitivity in response to irradiation in various bone marrow transplantation (BMT) protocols. To address this controversy, we analyzed the magnitude of depletion and repopulation of both lung CD11b(pos) DC and CD103(pos) DC subsets in response to irradiation and BMT in a murine model. In our study, CD45.2(pos) donor bone marrow cells were transplanted into irradiated CD45.1(pos) recipient mice to examine the depletion of recipient DC subsets and the repopulation of donor DC subsets. We observed an apoptosis-mediated and necrosis-mediated depletion (> 90%) of the recipient CD103(pos) DC subset, and only a 50-60% depletion of recipient CD11b(pos) DCs from lung parenchymal tissue on Days 3 and 5, whereas recipient alveolar and lung macrophages were much less radiosensitive, showing an approximately 50% depletion by Days 14-21 after treatment. A repopulation of lung tissue with donor DC subsets had occurred by Days 10 and 28 for CD11b(pos) DCs and CD103(pos) DCs, whereas alveolar and lung macrophages were repopulated by 6 and 10 weeks after treatment. Furthermore, the infection of mice with Streptococcus pneumoniae further accelerated the turnover of lung DCs and lung macrophage subsets. Our data illustrate the vulnerability of lung CD103(pos) DCs and CD11b(pos) DCs to irradiation, and indicate that an accelerated turnover of lung DC subsets occurs, relative to pulmonary and lung macrophages. Our findings may have important implications in the development of adjuvant immune-stimulatory protocols that could reduce the risk of opportunistic infections in patients undergoing BMT.


Assuntos
Transplante de Medula Óssea/métodos , Células Dendríticas/citologia , Pulmão/patologia , Animais , Antígenos CD/biossíntese , Apoptose , Antígeno CD11b/biossíntese , Imunofenotipagem , Cadeias alfa de Integrinas/biossíntese , Antígenos Comuns de Leucócito/biossíntese , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Necrose , Streptococcus pneumoniae/metabolismo , Fatores de Tempo
8.
Infect Immun ; 79(12): 4893-901, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21911460

RESUMO

Neutrophil serine proteases cathepsin G (CG), neutrophil elastase (NE), and proteinase 3 (PR3) have recently been shown to contribute to killing of Streptococcus pneumoniae in vitro. However, their relevance in lung-protective immunity against different serotypes of S. pneumoniae in vivo has not been determined so far. Here, we examined the effect of CG and CG/NE deficiency on the lung host defense against S. pneumoniae in mice. Despite similar neutrophil recruitment, both CG knockout (KO) mice and CG/NE double-KO mice infected with focal pneumonia-inducing serotype 19 S. pneumoniae demonstrated a severely impaired bacterial clearance, which was accompanied by lack of CG and NE but not PR3 proteolytic activity in recruited neutrophils, as determined using fluorescence resonance energy transfer (FRET) substrates. Moreover, both CG and CG/NE KO mice but not wild-type mice responded with increased lung permeability to infection with S. pneumoniae, resulting in severe respiratory distress and progressive mortality. Both neutrophil depletion and ablation of hematopoietic CG/NE in bone marrow chimeras abolished intra-alveolar CG and NE immunoreactivity and led to bacterial outgrowth in the lungs of mice, thereby identifying recruited neutrophils as the primary cellular source of intra-alveolar CG and NE. This is the first study showing a contribution of neutrophil-derived neutral serine proteases CG and NE to lung-protective immunity against focal pneumonia-inducing serotype 19 S. pneumoniae in mice. These data may be important for the development of novel intervention strategies to improve lung-protective immune mechanisms in critically ill patients suffering from severe pneumococcal pneumonia.


Assuntos
Catepsina G/metabolismo , Elastase de Leucócito/metabolismo , Pulmão/imunologia , Pneumonia Pneumocócica/imunologia , Streptococcus pneumoniae/fisiologia , Animais , Líquido da Lavagem Broncoalveolar , Catepsina G/genética , Elastase de Leucócito/genética , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Neutrófilos/fisiologia , Oxigênio/sangue , Peptídeo Hidrolases/metabolismo , Permeabilidade , Streptococcus pneumoniae/imunologia
9.
Nat Commun ; 9(1): 2517, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955049

RESUMO

Haematopoietic stem cells (HSCs) are generated from haemogenic endothelial (HE) cells via the formation of intra-aortic haematopoietic clusters (IAHCs) in vertebrate embryos. The molecular events controlling endothelial specification, endothelial-to-haematopoietic transition (EHT) and IAHC formation, as it occurs in vivo inside the aorta, are still poorly understood. To gain insight in these processes, we performed single-cell RNA-sequencing of non-HE cells, HE cells, cells undergoing EHT, IAHC cells, and whole IAHCs isolated from mouse embryo aortas. Our analysis identified the genes and transcription factor networks activated during the endothelial-to-haematopoietic switch and IAHC cell maturation toward an HSC fate. Our study provides an unprecedented complete resource to study in depth HSC generation in vivo. It will pave the way for improving HSC production in vitro to address the growing need for tailor-made HSCs to treat patients with blood-related disorders.


Assuntos
Aorta/metabolismo , Linhagem da Célula , Regulação da Expressão Gênica no Desenvolvimento , Hemangioblastos/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Transcriptoma , Animais , Aorta/citologia , Aorta/crescimento & desenvolvimento , Diferenciação Celular , Embrião de Mamíferos , Feminino , Ontologia Genética , Redes Reguladoras de Genes , Hemangioblastos/citologia , Células-Tronco Hematopoéticas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Anotação de Sequência Molecular , Análise de Célula Única
10.
PLoS One ; 8(5): e62497, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23741294

RESUMO

AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK ß-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Metabolismo Energético/genética , Glutationa Transferase/metabolismo , Glutationa/metabolismo , Proteínas de Helminto/metabolismo , Subunidades Proteicas/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Sítios de Ligação , Ativação Enzimática , Expressão Gênica , Glutationa Transferase/genética , Proteínas de Helminto/genética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Fígado/química , Fígado/enzimologia , Oxirredução , Estresse Oxidativo , Ligação Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas/genética , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schistosoma japonicum/química , Schistosoma japonicum/enzimologia , Transdução de Sinais
11.
J Proteomics ; 75(11): 3304-13, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22507198

RESUMO

AMP-activated protein kinase (AMPK) is emerging as a central cellular signaling hub involved in energy homeostasis and proliferation. The kinase is considered as a suitable target for pharmacological intervention in several energy-related pathologies like diabetes type II and cancer, although its signaling network is still incompletely understood. Here we apply an original two-dimensional in vitro screening approach for AMPK substrates that combines biophysical interaction based on surface plasmon resonance with in vitro phosphorylation. By enriching for proteins that interact with a specific AMPK isoform, we aimed to identify substrates that are also preferentially phosphorylated by this specific AMPK isoform. Application of this screen to full-length AMPK α2ß2γ1 and soluble rat liver proteins identified the tumor suppressor fumarate hydratase (FH). FH was confirmed to interact with and to be preferentially phosphorylated by the AMPKα2 isoform by using yeast-two-hybrid and in vitro phosphorylation assays. AMPK-mediated phosphorylation of FH significantly increased enzyme activity in vitro and in vivo, suggesting that it is a bona fide AMPK substrate. In vivo, AMPKα2 is supposed to target the cytosolic/nuclear pools of FH, whose tumor suppressor function relies on DNA damage repair and inhibition of HIF-1α-signaling.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fumarato Hidratase/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Reparo do DNA , Fumarato Hidratase/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Ratos , Transdução de Sinais/fisiologia , Especificidade por Substrato/fisiologia , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa