Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Breast Cancer Res ; 25(1): 119, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803350

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a particularly aggressive and difficult-to-treat subtype of breast cancer that requires the development of novel therapeutic strategies. To pave the way for such developments it is essential to characterize new molecular players in TNBC. MicroRNAs (miRNAs) constitute interesting candidates in this regard as they are frequently deregulated in cancer and contribute to numerous aspects of carcinogenesis. METHODS AND RESULTS: Here, we discovered that miR-4649-5p, a miRNA yet uncharacterized in breast cancer, is associated with better overall survival of TNBC patients. Ectopic upregulation of the otherwise very low endogenous expression levels of miR-4646-5p significantly decreased the growth, proliferation, and migration of TNBC cells. By performing whole transcriptome analysis and physical interaction assays, we were able to identify the phosphatidylinositol phosphate kinase PIP5K1C as a direct target of miR-4649-5p. Downregulation or pharmacologic inhibition of PIP5K1C phenocopied the growth-reducing effects of miR-4649-5p. PIP5K1C is known to play an important role in migration and cell adhesion, and we could furthermore confirm its impact on downstream PI3K/AKT signaling. Combinations of miR-4649-5p upregulation and PIP5K1C or AKT inhibition, using the pharmacologic inhibitors UNC3230 and capivasertib, respectively, showed additive growth-reducing effects in TNBC cells. CONCLUSION: In summary, miR-4649-5p exerts broad tumor-suppressive effects in TNBC and shows potential for combined therapeutic approaches targeting the PIP5K1C/PI3K/AKT signaling axis.


Assuntos
MicroRNAs , Neoplasias de Mama Triplo Negativas , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
2.
Cell Mol Life Sci ; 79(7): 391, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35776213

RESUMO

The RNA-binding protein ALYREF (THOC4) is involved in transcriptional regulation and nuclear mRNA export, though its role and molecular mode of action in breast carcinogenesis are completely unknown. Here, we identified high ALYREF expression as a factor for poor survival in breast cancer patients. ALYREF significantly influenced cellular growth, apoptosis and mitochondrial energy metabolism in breast cancer cells as well as breast tumorigenesis in orthotopic mouse models. Transcriptional profiling, phenocopy and rescue experiments identified the short isoform of the lncRNA NEAT1 as a molecular trigger for ALYREF effects in breast cancer. Mechanistically, we found that ALYREF binds to the NEAT1 promoter region to enhance the global NEAT1 transcriptional activity. Importantly, by stabilizing CPSF6, a protein that selectively activates the post-transcriptional generation of the short isoform of NEAT1, as well as by direct binding and stabilization of the short isoform of NEAT1, ALYREF selectively fine-tunes the expression of the short NEAT1 isoform. Overall, our study describes ALYREF as a novel factor contributing to breast carcinogenesis and identifies novel molecular mechanisms of regulation the two isoforms of NEAT1.


Assuntos
Neoplasias da Mama , Proteínas Nucleares , RNA Longo não Codificante , Proteínas de Ligação a RNA , Fatores de Transcrição , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica , Feminino , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de RNA , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
3.
RNA Biol ; 19(1): 1305-1315, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36469564

RESUMO

The microRNA-200 family has wide-ranging regulatory functions in cancer development and progression. Above all, it is strongly associated with the epithelial-to-mesenchymal transition (EMT), a process during which cells change their epithelial to a mesenchymal phenotype and acquire invasive characteristics. More recently, miR-200 family members have also been reported to impact the immune evasion of cancer cells by regulating the expression of immunoinhibitory immune checkpoints (ICs) like PD-L1. Therefore, we aimed to comprehensively characterize this miR-200 family as a regulatory interface between EMT and immune evasion mechanisms in biliary tract cancer. Initial correlation analyses and transient overexpression experiments using miRNA mimics suggested miR-200c-3p as a putative regulator of ICs including PD-L1, LGALS9, and IDO1. However, these effects could not be confirmed in stable miR-200c-3p overexpression cell lines, nor in cells transiently transfected with miR-200c-3p mimic from an independent manufacturer. By shifting our efforts towards dissecting the mechanisms leading to these disparate effects, we observed that the initially used miR-200c-3p mimic triggered a double-stranded (ds)RNA-dependent antiviral response. Besides upregulating the ICs, this had substantial cellular consequences including an induction of interferon type I and type III expression, increased levels of intracellular dsRNA sensors, and a significantly altered cellular growth and apoptotic activity.Our study highlights the capability of miRNA mimics to non-specifically induce a dsRNA-mediated antiviral interferon response. Consequently, phenotypic alterations crucially distort physiological miRNA functions and might result in a major misinterpretation of previous and future miRNA studies, especially in the context of IC regulation.


Assuntos
MicroRNAs , MicroRNAs/metabolismo , Interferons/genética , Interferons/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Transição Epitelial-Mesenquimal/genética , Proliferação de Células , Antivirais/farmacologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
4.
Gut ; 69(10): 1818-1831, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31988194

RESUMO

OBJECTIVE: To investigate the function of a novel primate-specific long non-coding RNA (lncRNA), named FLANC, based on its genomic location (co-localised with a pyknon motif), and to characterise its potential as a biomarker and therapeutic target. DESIGN: FLANC expression was analysed in 349 tumours from four cohorts and correlated to clinical data. In a series of multiple in vitro and in vivo models and molecular analyses, we characterised the fundamental biological roles of this lncRNA. We further explored the therapeutic potential of targeting FLANC in a mouse model of colorectal cancer (CRC) metastases. RESULTS: FLANC, a primate-specific lncRNA feebly expressed in normal colon cells, was significantly upregulated in cancer cells compared with normal colon samples in two independent cohorts. High levels of FLANC were associated with poor survival in two additional independent CRC patient cohorts. Both in vitro and in vivo experiments demonstrated that the modulation of FLANC expression influenced cellular growth, apoptosis, migration, angiogenesis and metastases formation ability of CRC cells. In vivo pharmacological targeting of FLANC by administration of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine nanoparticles loaded with a specific small interfering RNA, induced significant decrease in metastases, without evident tissue toxicity or pro-inflammatory effects. Mechanistically, FLANC upregulated and prolonged the half-life of phosphorylated STAT3, inducing the overexpression of VEGFA, a key regulator of angiogenesis. CONCLUSIONS: Based on our findings, we discovered, FLANC as a novel primate-specific lncRNA that is highly upregulated in CRC cells and regulates metastases formation. Targeting primate-specific transcripts such as FLANC may represent a novel and low toxic therapeutic strategy for the treatment of patients.


Assuntos
Carcinogênese , Proliferação de Células , Neoplasias Colorretais , Neovascularização Patológica , RNA Longo não Codificante , Fator de Transcrição STAT3/metabolismo , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia , Descoberta de Drogas , Regulação Neoplásica da Expressão Gênica , Marcadores Genéticos , Terapia Genética , Humanos , Camundongos , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Testes Farmacogenômicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
5.
Breast Cancer Res ; 21(1): 20, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709367

RESUMO

BACKGROUND: Non-coding RNAs and especially microRNAs have been discovered to act as master regulators of cancer initiation and progression. The aim of our study was to discover and characterize the function of yet functionally uncharacterized microRNAs in human breast carcinogenesis. METHODS: In an unbiased approach, we utilized an established model system for breast cancer (BC) stem cell formation ("mammosphere assay") to identify whole miRNome alterations in breast carcinogenesis. Clinical samples of BC patients were used to evaluate the human relevance of the newly identified miRNA candidates. One promising candidate, miR-1287-5p, was further explored on its impact on several hallmarks of cancer. The molecular mode of action was characterized by whole transcriptome analysis, in silico prediction tools, miRNA-interaction assays, pheno-copy assays, and drug sensitivity assays. RESULTS: Among several other microRNAs, miR-1287-5p was significantly downregulated in mammospheres and human BC tissue compared to normal breast tissue (p < 0.0001). Low expression levels were significantly associated with poor prognosis in BC patients. MiR-1287-5p significantly decreased cellular growth, cells in S phase of cell cycle, anchorage-independent growth, and tumor formation in vivo. In addition, we identified PIK3CB as a direct molecular interactor of miR-1287-5p and a novel prognostic factor in BC. Finally, PI3Kinase pathway chemical inhibitors combined with miR-1287-5p mimic increased the pharmacological growth inhibitory potential in triple negative BC cells. CONCLUSION: Our data identified for the first time the involvement of miR-1287-5p in human BC and suggest a potential for therapeutic interventions in difficult to treat triple negative BC.


Assuntos
Carcinogênese/genética , Classe I de Fosfatidilinositol 3-Quinases/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Animais , Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Análise de Sequência com Séries de Oligonucleotídeos , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Physiol Biochem ; 53(3): 573-586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31529929

RESUMO

BACKGROUND/AIMS: In our recent work, the importance of GSK3ß-mediated phosphorylation of presenilin-1 as crucial process to establish a Ca2+ leak in the endoplasmic reticulum and, subsequently, the pre-activation of resting mitochondrial activity in ß-cells was demonstrated. The present work is a follow-up and reveals the importance of GSK3ß-phosphorylated presenilin-1 for responsiveness of pancreatic islets and ß-cells to elevated glucose in terms of cytosolic Ca2+ spiking and insulin secretion. METHODS: Freshly isolated pancreatic islets and the two pancreatic ß-cell lines INS-1 and MIN-6 were used. Cytosolic Ca2+ was fluorometrically monitored using Fura-2/AM and cellular insulin content and secretion were measured by ELISA. RESULTS: Our data strengthened our previous findings of the existence of a presenilin-1-mediated ER-Ca2+ leak in ß-cells, since a reduction of presenilin-1 expression strongly counteracted the ER Ca2+ leak. Furthermore, our data revealed that cytosolic Ca2+ spiking upon administration of high D-glucose was delayed in onset time and strongly reduced in amplitude and frequency upon siRNA-mediated knock-down of presenilin-1 or the inhibition of GSK3ß in the pancreatic ß-cells. Moreover, glucose-triggered initial insulin secretion disappeared by depletion from presenilin-1 and inhibition of GSK3ß in the pancreatic ß-cells and isolated pancreatic islets, respectively. CONCLUSION: These data complement our previous work and demonstrate that the sensitivity of pancreatic islets and ß-cells to glucose illustrated as glucose-triggered cytosolic Ca2+ spiking and initial but not long-lasting insulin secretion crucially depends on a strong ER Ca2+ leak that is due to the phosphorylation of presenilin-1 by GSK3ß, a phenomenon that might be involved in the development of type 2 diabetes.


Assuntos
Retículo Endoplasmático/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Presenilina-1/metabolismo , Animais , Antracenos/farmacologia , Cálcio/metabolismo , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Humanos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/efeitos dos fármacos , Ilhotas Pancreáticas/efeitos dos fármacos , MAP Quinase Quinase 4/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Cell Physiol Biochem ; 52(1): 57-75, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30790505

RESUMO

BACKGROUND/AIMS: In pancreatic ß-cells, the intracellular Ca²âº homeostasis is an essential regulator of the cells major functions. The endoplasmic reticulum (ER) as interactive intracellular Ca²âº store balances cellular Ca²âº. In this study basal ER Ca²âº homeostasis was evaluated in order to reveal potential ß-cell-specificity of ER Ca²âº handling and its consequences for mitochondrial Ca²âº, ATP and respiration. METHODS: The two pancreatic cell lines INS-1 and MIN-6, freshly isolated pancreatic islets, and the two non-pancreatic cell lines HeLA and EA.hy926 were used. Cytosolic, ER and mitochondrial Ca²âº and ATP measurements were performed using single cell fluorescence microscopy and respective (genetically-encoded) sensors/dyes. Mitochondrial respiration was monitored by respirometry. GSK3ß activity was measured with ELISA. RESULTS: An atypical ER Ca²âº leak was observed exclusively in pancreatic islets and ß-cells. This continuous ER Ca²âº efflux is directed to mitochondria and increases basal respiration and organellar ATP levels, is established by GSK3ß-mediated phosphorylation of presenilin-1, and is prevented by either knockdown of presenilin-1 or an inhibition/knockdown of GSK3ß. Expression of a presenlin-1 mutant that mimics GSK3ß-mediated phosphorylation established a ß-cell-like ER Ca²âº leak in HeLa and EA.hy926 cells. The ER Ca²âº loss in ß-cells was compensated at steady state by Ca²âº entry that is linked to the activity of TRPC3. CONCLUSION: Pancreatic ß-cells establish a cell-specific ER Ca²âº leak that is under the control of GSK3ß and directed to mitochondria, thus, reflecting a cell-specific intracellular Ca²âº handling for basal mitochondrial activity.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Secretoras de Insulina/metabolismo , Mitocôndrias/metabolismo , Presenilina-1/metabolismo , Animais , Linhagem Celular Tumoral , Retículo Endoplasmático/genética , Glicogênio Sintase Quinase 3 beta/genética , Células HeLa , Humanos , Masculino , Camundongos , Mitocôndrias/genética , Fosforilação , Presenilina-1/genética , Ratos
8.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817135

RESUMO

Pancreatic beta (ß) cell dysfunction results in compromised insulin release and, thus, failed regulation of blood glucose levels. This forms the backbone of the development of diabetes mellitus (DM), a disease that affects a significant portion of the global adult population. Physiological calcium (Ca2+) signaling has been found to be vital for the proper insulin-releasing function of ß-cells. Calcium dysregulation events can have a dramatic effect on the proper functioning of the pancreatic ß-cells. The current review discusses the role of calcium signaling in health and disease in pancreatic ß-cells and provides an in-depth look into the potential role of alterations in ß-cell Ca2+ homeostasis and signaling in the development of diabetes and highlights recent work that introduced the current theories on the connection between calcium and the onset of diabetes.


Assuntos
Sinalização do Cálcio , Células Secretoras de Insulina/metabolismo , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Secreção de Insulina , Células Secretoras de Insulina/citologia , Mitocôndrias/metabolismo
9.
Int J Mol Sci ; 20(3)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717168

RESUMO

Long non-coding RNAs (lncRNAs) are involved in a variety of biological and cellular processes as well as in physiologic and pathophysiologic events. This review summarizes recent literature about the role of the lncRNA nuclear enriched abundant transcript 1 (NEAT1) in non-cancerous diseases with a special focus on viral infections and neurodegenerative diseases. In contrast to its role as competing endogenous RNA (ceRNA) in carcinogenesis, NEAT1's function in non-cancerous diseases predominantly focuses on paraspeckle-mediated effects on gene expression. This involves processes such as nuclear retention of mRNAs or sequestration of paraspeckle proteins from specific promoters, resulting in transcriptional induction or repression of genes involved in regulating the immune system or neurodegenerative processes. NEAT1 expression is aberrantly-mostly upregulated-in non-cancerous pathological conditions, indicating that it could serve as potential prognostic biomarker. Additional studies are needed to elucidate NEAT1's capability to be a therapeutic target for non-cancerous diseases.


Assuntos
Doenças Neurodegenerativas/genética , Proteínas Nucleares/genética , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Viroses/genética , Biomarcadores/metabolismo , Carcinogênese/genética , Carcinogênese/imunologia , Carcinogênese/patologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Família Multigênica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Doenças Neurodegenerativas/diagnóstico , Doenças Neurodegenerativas/imunologia , Doenças Neurodegenerativas/patologia , Proteínas Nucleares/imunologia , Regiões Promotoras Genéticas , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , RNA Longo não Codificante/imunologia , Proteínas de Ligação a RNA/imunologia , Transdução de Sinais , Viroses/diagnóstico , Viroses/imunologia , Viroses/virologia
10.
Int J Mol Sci ; 19(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30321995

RESUMO

Metastatic testicular germ cell tumors (TGCTs) are a potentially curable disease by administration of risk-adapted cytotoxic chemotherapy. Nevertheless, a disease-relapse after curative chemotherapy needs more intensive salvage chemotherapy and significantly worsens the prognosis of TGCT patients. Circulating tumor markers (ß-subunit of human chorionic gonadotropin (ß-HCG), alpha-Fetoprotein (AFP), and Lactate Dehydrogenase (LDH)) are frequently used for monitoring disease recurrence in TGCT patients, though they lack diagnostic sensitivity and specificity. Increasing evidence suggests that serum levels of stem cell-associated microRNAs (miR-371a-3p and miR-302/367 cluster) are outperforming the traditional tumor markers in terms of sensitivity to detect newly diagnosed TGCT patients. The aim of this study was to investigate whether these miRNAs are also informative in detection of disease recurrence in TGCT patients after curative first line therapy. For this purpose, we measured the serum levels of miR-371a-3p and miR-367 in 52 samples of ten TGCT patients at different time points during disease relapse and during salvage chemotherapy. In our study, miR-371a-3p levels in serum samples with proven disease recurrence were 13.65 fold higher than levels from the same patients without evidence of disease (p = 0.014). In contrast, miR-367 levels were not different in these patient groups (p = 0.985). In conclusion, miR-371a-3p is a sensitive and potentially novel biomarker for detecting disease relapse in TGCT patients. This promising biomarker should be investigated in further large prospective trials.


Assuntos
Biomarcadores Tumorais/genética , MicroRNAs/sangue , Recidiva Local de Neoplasia/diagnóstico , Neoplasias Embrionárias de Células Germinativas/diagnóstico , Neoplasias Testiculares/diagnóstico , Regulação para Cima , Adulto , Idoso , Biomarcadores Tumorais/sangue , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Neoplasias Embrionárias de Células Germinativas/sangue , Neoplasias Embrionárias de Células Germinativas/genética , Estudos Prospectivos , Sensibilidade e Especificidade , Neoplasias Testiculares/sangue , Neoplasias Testiculares/genética
11.
Cell Physiol Biochem ; 39(4): 1404-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606689

RESUMO

BACKGROUND/AIMS: Resveratrol and its derivate piceatannol are known to induce cancer cell-specific cell death. While multiple mechanisms of actions have been described including the inhibition of ATP synthase, changes in mitochondrial membrane potential and ROS levels, the exact mechanisms of cancer specificity of these polyphenols remain unclear. This paper is designed to reveal the molecular basis of the cancer-specific initiation of cell death by resveratrol and piceatannol. METHODS: The two cancer cell lines EA.hy926 and HeLa, and somatic short-term cultured HUVEC were used. Cell viability and caspase 3/7 activity were tested. Mitochondrial, cytosolic and endoplasmic reticulum Ca2+ as well as cytosolic and mitochondrial ATP levels were measured using single cell fluorescence microscopy and respective genetically-encoded sensors. Mitochondria-ER junctions were analyzed applying super-resolution SIM and ImageJ-based image analysis. RESULTS: Resveratrol and piceatannol selectively trigger death in cancer but not somatic cells. Hence, these polyphenols strongly enhanced mitochondrial Ca2+ uptake in cancer exclusively. Resveratrol and piceatannol predominantly affect mitochondrial but not cytosolic ATP content that yields in a reduced SERCA activity. Decreased SERCA activity and the strongly enriched tethering of the ER and mitochondria in cancer cells result in an enhanced MCU/Letm1-dependent mitochondrial Ca2+ uptake upon intracellular Ca2+ release exclusively in cancer cells. Accordingly, resveratrol/piceatannol-induced cancer cell death could be prevented by siRNA-mediated knock-down of MCU and Letm1. CONCLUSIONS: Because their greatly enriched ER-mitochondria tethering, cancer cells are highly susceptible for resveratrol/piceatannol-induced reduction of SERCA activity to yield mitochondrial Ca2+ overload and subsequent cancer cell death.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Cálcio/agonistas , Retículo Endoplasmático/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estilbenos/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Transporte de Íons/efeitos dos fármacos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Especificidade de Órgãos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Resveratrol , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
12.
Sensors (Basel) ; 15(6): 13052-68, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26053751

RESUMO

Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET) between terminally located fluorescent proteins (FPs), which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP) as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP) have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER) have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store.


Assuntos
Cálcio/análise , Cálcio/química , Retículo Endoplasmático/química , Corantes Fluorescentes/química , Proteínas Luminescentes/química , Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Luminescentes/metabolismo , Microscopia Confocal
13.
Noncoding RNA ; 10(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38250802

RESUMO

MicroRNAs (miRNAs) are crucial post-transcriptional regulators of gene expression, and their deregulation contributes to many aspects of cancer development and progression. Thus, miRNAs provide insight into oncogenic mechanisms and represent promising targets for new therapeutic approaches. A type of cancer that is still in urgent need of improved treatment options is triple negative breast cancer (TNBC). Therefore, we aimed to characterize a novel miRNA with a potential role in TNBC. Based on a previous study, we selected miR-4646-5p, a miRNA with a still unknown function in breast cancer. We discovered that higher expression of miR-4646-5p in TNBC patients is associated with better survival. In vitro assays showed that miR-4646-5p overexpression reduces growth, proliferation, and migration of TNBC cell lines, whereas inhibition had the opposite effect. Furthermore, we found that miR-4646-5p inhibits the tube formation ability of endothelial cells, which may indicate anti-angiogenic properties. By whole transcriptome analysis, we not only observed that miR-4646-5p downregulates many oncogenic factors, like tumor-promoting cytokines and migration- and invasion-related genes, but were also able to identify a direct target, the GRAM domain-containing protein 1B (GRAMD1B). GRAMD1B is involved in cellular cholesterol transport and its knockdown phenocopied the growth-reducing effects of miR-4646-5p. We thus conclude that GRAMD1B may partly contribute to the diverse tumor-suppressive effects of miR-4646-5p in TNBC.

14.
Front Immunol ; 13: 840207, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432362

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have revolutionized systemic anti-tumor treatments across different types of cancer. Nevertheless, predictive biomarkers regarding treatment response are not routinely established yet. Apart from T-lymphocytes, the humoral immunity of B-lymphocytes is studied to a substantially lesser extent in the respective setting. Thus, the aim of this study was to evaluate peripheral blood B-cell subtypes as potential predictors of ICI treatment response. Methods: Thirty-nine cancer patients receiving ICI therapy were included into this prospective single-center cohort study. All had a first blood draw at the date before treatment initiation and a second at the time of first response evaluation (after 8-12 weeks). Seven different B-cell subtypes were quantified by fluorescence-activated cell sorting (FACS). Disease control- (DCR) and objective response rate (ORR) were co-primary study endpoints. Results: Overall, DCR was 48.7% and ORR was 25.6%, respectively. At baseline, there was no significant association of any B-cell subtype with neither DCR nor ORR. At the first response evaluation, an increase in the frequency of CD21- B-cells was a statistically significant negative predictor of response, both regarding DCR (OR=0.05, 95%CI=0.00-0.67, p=0.024) and ORR (OR=0.09, 95%CI=0.01-0.96, p=0.046). An increase of the frequency of switched memory B-cells was significantly associated with reduced odds for DCR (OR=0.06, 95%CI=0.01-0.70, p=0.025). Patients with an increased frequency of naïve B-cells were more likely to benefit from ICI therapy as indicated by an improved DCR (OR=12.31, 95%CI=1.13-134.22, p=0.039). Conclusion: In this study, certain B-cell subpopulations were associated with ICI treatment response in various human cancer types.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Linfócitos B , Estudos de Coortes , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Intervalo Livre de Progressão , Estudos Prospectivos
15.
Cancer Med ; 11(16): 3074-3083, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35297215

RESUMO

BACKGROUND: The presence of autoantibodies in the serum of cancer patients has been associated with immune-checkpoint inhibitor (ICI) therapy response and immune-related adverse events (irAEs). A prospective evaluation of different autoantibodies in different cancer entities is missing. MATERIALS AND METHODS: In this prospective cohort study, we included a pan-cancer cohort of patients undergoing ICI treatment and measured a comprehensive panel of autoantibodies at treatment start and at the time point of first response evaluation. The presence and induction of autoantibodies (ANA, ENA, myositis, hepatopathy, rheumatoid arthritis) in different cancer entities were assessed and the association between autoantibodies and disease control rate (DCR), objective response rate (ORR), and progression-free survival (PFS), as well as the development of grade 3 or higher irAEs were evaluated by logistic regression models, cox proportional hazard models, and Kaplan-Meier estimators. RESULTS: Of 44 patients with various cancer entities, neither the presence of any positive autoantibody measurement nor the presence of positive antinuclear antibodies (ANA) [≥1:80] at baseline was associated with the examined clinical endpoints (DCR, ORR, PFS) in univariable and multivariable analyses. After 8-12 weeks of ICI treatment, DCR, ORR, and PFS did not significantly differ between patients with and without any positive autoantibody measurement or positive ANA titers. The frequency of irAEs did not differ depending on autoantibody status of the patients. CONCLUSION: Autoantibodies at treatment initiation or induction after 8-12 weeks of ICI treatment are not associated with treatment efficacy as indicated by DCR, ORR, and PFS or higher grade irAEs.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Neoplasias , Autoanticorpos , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias/tratamento farmacológico , Estudos Prospectivos
16.
Cancers (Basel) ; 13(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33504059

RESUMO

Distant metastases are the main cause of cancer-related deaths in patients with advanced tumors. A standard diagnostic workup usually contains the identification of the tissue-of-origin of metastatic tumors, although under certain circumstances, it remains elusive. This disease setting is defined as cancer of unknown primary (CUP). Accounting for approximately 3-5% of all cancer diagnoses, CUPs are characterized by an aggressive clinical behavior and represent a real therapeutic challenge. The lack of determination of a tissue of origin precludes CUP patients from specific evidence-based therapeutic options or access to clinical trial, which significantly impacts their life expectancy. In the era of precision medicine, it is essential to characterize CUP molecular features, including the expression profile of non-coding RNAs, to improve our understanding of CUP biology and identify novel therapeutic strategies. This review article sheds light on this enigmatic disease by summarizing the current knowledge on CUPs focusing on recent discoveries and emerging diagnostic strategies.

17.
Cancers (Basel) ; 13(16)2021 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-34439151

RESUMO

Biliary tract cancer is a major global health issue in cancer-related mortality. Therapeutic options are limited, and cisplatin-based treatment schedules represent the mainstay of first-line therapeutic strategies. Although the gain of survival by the addition of cisplatin to gemcitabine is moderate, acquired cisplatin resistance frequently leads to treatment failures with mechanisms that are still poorly understood. Epithelial-mesenchymal transition (EMT) is a dynamic process that changes the shape, function, and gene expression pattern of biliary tract cancer cells. In this study, we explored the influence of the EMT-regulating miR-200c-3p on cisplatin sensitivity in biliary tract cancer cells. Using gain of function experiments, we demonstrated that miR-200c-3p regulates epithelial cell markers through the downregulation of the transcription factor ZEB1. MiR-200c-3p upregulation led to a decreased sensitivity against cisplatin, as observed in transient overexpression models as well as in cell lines stably overexpressing miR-200c-3p. The underlying mechanism seems to be independent of miR-200c-3p's influence on ZEB1 expression, as ZEB1 knockdown resulted in the opposite effect on cisplatin resistance, which was abolished when ZEB1 knockdown and miR-200c-3p overexpression occurred in parallel. Using a gene panel of 40 genes that were previously associated with cisplatin resistance, two (Dual Specificity Phosphatase 16 (DUSP16) and Stratifin (SFN)) were identified as significantly (>2 fold, p-value < 0.05) up-regulated in miR-200c-3p overexpressing cells. In conclusion, miR-200c-3p might be an important contributor to cisplatin resistance in biliary tract cancer, independently of its interaction with ZEB1.

18.
Viruses ; 12(12)2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271762

RESUMO

The emergence of SARS-CoV-2 in 2019 has caused a major health and economic crisis around the globe. Gaining knowledge about its attributes and interactions with human host cells is crucial. Non-coding RNAs (ncRNAs) are involved in the host cells' innate antiviral immune response. In RNA interference, microRNAs (miRNAs) may bind to complementary sequences of the viral RNA strand, forming an miRNA-induced silencing complex, which destroys the viral RNA, thereby inhibiting viral protein expression. There are several targets for human miRNAs on SARS-CoV-2's RNA, most of which are in the 5' and 3' untranslated regions. Mutations of the viral genome causing the creation or loss of miRNA binding sites may have crucial effects on SARS-CoV-2 pathogenicity. In addition to mediating immunity, the ncRNA landscape of host cells further influences their susceptibility to virus infection, as certain miRNAs are essential in the regulation of cellular receptors that are necessary for virus invasion. Conversely, virus infection also changes the host ncRNA expression patterns, possibly augmenting conditions for viral replication and dissemination. Hence, ncRNAs typically upregulated in SARS-CoV-2 infection could be useful biomarkers for disease progression and severity. Understanding these mechanisms could provide further insight into the pathogenesis and possible treatment options against COVID-19.


Assuntos
Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Coronavirus/patogenicidade , RNA não Traduzido/metabolismo , Animais , Antivirais/metabolismo , Antivirais/uso terapêutico , Coronavirus/genética , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/genética , Humanos , Evasão da Resposta Imune/genética , Mutação , Interferência de RNA , RNA não Traduzido/genética , RNA não Traduzido/uso terapêutico , RNA Viral/genética
19.
Noncoding RNA ; 6(4)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992718

RESUMO

Long non-coding RNAs (lncRNAs) are defined as non-protein coding transcripts with a minimal length of 200 nucleotides. They are involved in various biological processes such as cell differentiation, apoptosis, as well as in pathophysiological processes. Numerous studies considered that frequently deregulated lncRNAs contribute to all hallmarks of cancer including metastasis, drug resistance, and angiogenesis. Angiogenesis, the formation of new blood vessels, is crucial for a tumor to receive sufficient amounts of nutrients and oxygen and therefore, to grow and exceed in its size over the diameter of 2 mm. In this review, the regulatory mechanisms of lncRNAs are described, which influence tumor angiogenesis by directly or indirectly regulating oncogenic pathways, interacting with other transcripts such as microRNAs (miRNAs) or modulating the tumor microenvironment. Further, angiogenic lncRNAs occurring in several cancer types such as liver, gastrointestinal cancer, or brain tumors are summarized. Growing evidence on the influence of lncRNAs on tumor angiogenesis verified these transcripts as potential predictive or diagnostic biomarkers or therapeutic targets of anti-angiogenesis treatment. However, there are many unsolved questions left which are pointed out in this review, hence driving comprehensive research in this area is necessary to enable an effective use of lncRNAs as either therapeutic molecules or diagnostic targets in cancer.

20.
Noncoding RNA ; 6(3)2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32640630

RESUMO

Hypoxia is dangerous for oxygen-dependent cells, therefore, physiological adaption to cellular hypoxic conditions is essential. The transcription factor hypoxia-inducible factor (HIF) is the main regulator of hypoxic metabolic adaption reducing oxygen consumption and is regulated by gradual von Hippel-Lindau (VHL)-dependent proteasomal degradation. Beyond physiology, hypoxia is frequently encountered within solid tumors and first drugs are in clinical trials to tackle this pathway in cancer. Besides hypoxia, cancer cells may promote HIF expression under normoxic conditions by altering various upstream regulators, cumulating in HIF upregulation and enhanced glycolysis and angiogenesis, altogether promoting tumor proliferation and progression. Therefore, understanding the underlying molecular mechanisms is crucial to discover potential future therapeutic targets to evolve cancer therapy. Long non-coding RNAs (lncRNA) are a class of non-protein coding RNA molecules with a length of over 200 nucleotides. They participate in cancer development and progression and might act as either oncogenic or tumor suppressive factors. Additionally, a growing body of evidence supports the role of lncRNAs in the hypoxic and normoxic regulation of HIF and its subunits HIF-1α and HIF-2α in cancer. This review provides a comprehensive update and overview of lncRNAs as regulators of HIFs expression and activation and discusses and highlights potential involved pathways.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa