Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(12): 3072-3089.e20, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38781967

RESUMO

Tissue folds are structural motifs critical to organ function. In the intestine, bending of a flat epithelium into a periodic pattern of folds gives rise to villi, finger-like protrusions that enable nutrient absorption. However, the molecular and mechanical processes driving villus morphogenesis remain unclear. Here, we identify an active mechanical mechanism that simultaneously patterns and folds the intestinal epithelium to initiate villus formation. At the cellular level, we find that PDGFRA+ subepithelial mesenchymal cells generate myosin II-dependent forces sufficient to produce patterned curvature in neighboring tissue interfaces. This symmetry-breaking process requires altered cell and extracellular matrix interactions that are enabled by matrix metalloproteinase-mediated tissue fluidization. Computational models, together with in vitro and in vivo experiments, revealed that these cellular features manifest at the tissue level as differences in interfacial tensions that promote mesenchymal aggregation and interface bending through a process analogous to the active dewetting of a thin liquid film.


Assuntos
Matriz Extracelular , Mucosa Intestinal , Animais , Camundongos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/citologia , Matriz Extracelular/metabolismo , Miosina Tipo II/metabolismo , Mesoderma/metabolismo , Mesoderma/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Morfogênese , Metaloproteinases da Matriz/metabolismo
2.
Am J Hum Genet ; 111(1): 39-47, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181734

RESUMO

Craniofacial phenotyping is critical for both syndrome delineation and diagnosis because craniofacial abnormalities occur in 30% of characterized genetic syndromes. Clinical reports, textbooks, and available software tools typically provide two-dimensional, static images and illustrations of the characteristic phenotypes of genetic syndromes. In this work, we provide an interactive web application that provides three-dimensional, dynamic visualizations for the characteristic craniofacial effects of 95 syndromes. Users can visualize syndrome facial appearance estimates quantified from data and easily compare craniofacial phenotypes of different syndromes. Our application also provides a map of morphological similarity between a target syndrome and other syndromes. Finally, users can upload 3D facial scans of individuals and compare them to our syndrome atlas estimates. In summary, we provide an interactive reference for the craniofacial phenotypes of syndromes that allows for precise, individual-specific comparisons of dysmorphology.


Assuntos
Face , Software , Humanos , Fácies , Fenótipo , Síndrome
3.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38857279

RESUMO

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Assuntos
Adesão Celular , Movimento Celular , Proteínas Hedgehog , Miosina Tipo II , Transdução de Sinais , Animais , Camundongos , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adesão Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimento Celular/genética , Epitélio/metabolismo , Morfogênese/genética , Dente/metabolismo , Dente/crescimento & desenvolvimento , Células Epiteliais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Regulação da Expressão Gênica no Desenvolvimento
4.
Cell Stem Cell ; 31(7): 949-960, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971147

RESUMO

Tissue regeneration after damage is generally thought to involve the mobilization of adult stem cells that divide and differentiate into progressively specialized progeny. However, recent studies indicate that tissue regeneration can be accompanied by reversion to a fetal-like state. During this process, cells at the injury site reactivate programs that operate during fetal development but are typically absent in adult homeostasis. Here, we summarize our current understanding of the molecular signals and epigenetic mediators that orchestrate "fetal-like reversion" during intestinal regeneration. We also explore evidence for this phenomenon in other organs and species and highlight open questions that merit future examination.


Assuntos
Intestinos , Regeneração , Humanos , Animais , Intestinos/fisiologia , Diferenciação Celular , Feto , Transdução de Sinais
5.
Cell Death Dis ; 15(4): 256, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600092

RESUMO

Stromal fibroblasts are a major stem cell niche component essential for organ formation and cancer development. Fibroblast heterogeneity, as revealed by recent advances in single-cell techniques, has raised important questions about the origin, differentiation, and function of fibroblast subtypes. In this study, we show in mammary stromal fibroblasts that loss of the receptor tyrosine kinase (RTK) negative feedback regulators encoded by Spry1, Spry2, and Spry4 causes upregulation of signaling in multiple RTK pathways and increased extracellular matrix remodeling, resulting in accelerated epithelial branching. Single-cell transcriptomic analysis demonstrated that increased production of FGF10 due to Sprouty (Spry) loss results from expansion of a functionally distinct subgroup of fibroblasts with the most potent branching-promoting ability. Compared to their three independent lineage precursors, fibroblasts in this subgroup are "activated," as they are located immediately adjacent to the epithelium that is actively undergoing branching and invasion. Spry genes are downregulated, and activated fibroblasts are expanded, in all three of the major human breast cancer subtypes. Together, our data highlight the regulation of a functional subtype of mammary fibroblasts by Spry genes and their essential role in epithelial morphogenesis and cancer development.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Proteínas de Membrana/metabolismo , Transdução de Sinais , Diferenciação Celular/genética , Receptores Proteína Tirosina Quinases/metabolismo , Fibroblastos/metabolismo
6.
Nat Cell Biol ; 26(4): 519-529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570617

RESUMO

Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.


Assuntos
Incisivo , Transdução de Sinais , Animais , Feminino , Gravidez , Diferenciação Celular , Mamíferos , Proliferação de Células , Estresse Mecânico
7.
bioRxiv ; 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38187646

RESUMO

Continuously growing teeth are an important innovation in mammalian evolution, yet genetic regulation of continuous growth by stem cells remains incompletely understood. Dental stem cells responsible for tooth crown growth are lost at the onset of tooth root formation. Genetic signaling that initiates this loss is difficult to study with the ever-growing incisor and rooted molars of mice, the most common mammalian dental model species, because signals for root formation overlap with signals that pattern tooth size and shape (i.e., cusp patterns). Different species of voles (Cricetidae, Rodentia, Glires) have evolved rooted and unrooted molars that have similar size and shape, providing alternative models for studying roots. We assembled a de novo genome of Myodes glareolus, a vole with high-crowned, rooted molars, and performed genomic and transcriptomic analyses in a broad phylogenetic context of Glires (rodents and lagomorphs) to assess differential selection and evolution in tooth forming genes. We identified 15 dental genes with changing synteny relationships and six dental genes undergoing positive selection across Glires, two of which were undergoing positive selection in species with unrooted molars, Dspp and Aqp1. Decreased expression of both genes in prairie voles with unrooted molars compared to bank voles supports the presence of positive selection and may underlie differences in root formation. Bulk transcriptomics analyses of embryonic molar development in bank voles also demonstrated conserved patterns of dental gene expression compared to mice, with species-specific variation likely related to developmental timing and morphological differences between mouse and vole molars. Our results support ongoing evolution of dental genes across Glires, revealing the complex evolutionary background of convergent evolution for ever-growing molars.

8.
Sci Rep ; 14(1): 19479, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39174793

RESUMO

Genes of the Sprouty family (Spry1-4) are feedback inhibitors of receptor tyrosine kinases, especially of Ret and the FGF receptors. As such, they play distinct and overlapping roles in embryo morphogenesis and are considered to be tumor suppressors in adult life. Genetic experiments in mice have defined in great detail the role of these genes during embryonic development, however their function in adult mice is less clearly established. Here we generate adult-onset, whole body Spry1/2/4 triple knockout mice. Tumor incidence in triple mutant mice is comparable to that of wild type littermates of up to one year of age, indicating that Sprouty loss per se is not sufficient to initiate tumorigenesis. On the other hand, triple knockout mice do not gain weight as they age, show less visceral fat, and have lower plasma glucose levels than wild type littermates, despite showing similar food intake and slightly reduced motor function. They also show alopecia, eyelid inflammation, and mild hyperthyroidism. Finally, triple knockout mice present phosphaturia and hypophosphatemia, suggesting exacerbated signaling downstream of FGF23. In conclusion, triple knockout mice develop a series of endocrine abnormalities but do not show increased tumor incidence.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fator de Crescimento de Fibroblastos 23 , Proteínas de Membrana , Camundongos Knockout , Fosfoproteínas , Animais , Camundongos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Feminino , Masculino , Doenças do Sistema Endócrino/genética , Doenças do Sistema Endócrino/metabolismo , Proteínas do Tecido Nervoso , Proteínas Serina-Treonina Quinases
9.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370663

RESUMO

Organoids are powerful models of tissue physiology, yet their applications remain limited due to a lack of complex tissue morphology and high organoid-to-organoid structural variability. To address these limitations we developed a soft, composite yield-stress extracellular matrix that supports freeform 3D bioprinting of cell slurries at tissue-like densities. Combined with a custom piezoelectric printhead, this platform allows more reproducible and complex morphogenesis from uniform and spatially organized organoid "seeds." At 4 °C the material exhibits reversible yield-stress behavior to support long printing times without compromising cell viability. When transferred to cell culture at 37 °C, the material cross-links and exhibits similar viscoelasticity and plasticity to basement membrane extracts such as Matrigel. We use this setup for high-throughput generation of intestinal and salivary gland organoid arrays that are morphologically indistinguishable from those grown in pure Matrigel, but exhibit dramatically improved homogeneity in organoid size, shape, maturation time, and budding efficiency. The reproducibility of organoid structure afforded by this approach increases the sensitivity of assays by orders of magnitude, requiring less input material and reducing analysis times. The flexibility of this approach additionally enabled the fabrication of perfusable intestinal organoid tubes. Combined, these advances lay the foundation for the efficient design of complex tissue morphologies in both space and time.

10.
bioRxiv ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38895298

RESUMO

Human facial shape, while strongly heritable, involves both genetic and structural complexity, necessitating precise phenotyping for accurate assessment. Common phenotyping strategies include simplifying 3D facial features into univariate traits such as anthropometric measurements (e.g., inter-landmark distances), unsupervised dimensionality reductions (e.g., principal component analysis (PCA) and auto-encoder (AE) approaches), and assessing resemblance to particular facial gestalts (e.g., syndromic facial archetypes). This study provides a comparative assessment of these strategies in genome-wide association studies (GWASs) of 3D facial shape. Specifically, we investigated inter-landmark distances, PCA and AE-derived latent dimensions, and facial resemblance to random, extreme, and syndromic gestalts within a GWAS of 8,426 individuals of recent European ancestry. Inter-landmark distances exhibit the highest SNP-based heritability as estimated via LD score regression, followed by AE dimensions. Conversely, resemblance scores to extreme and syndromic facial gestalts display the lowest heritability, in line with expectations. Notably, the aggregation of multiple GWASs on facial resemblance to random gestalts reveals the highest number of independent genetic loci. This novel, easy-to-implement phenotyping approach holds significant promise for capturing genetically relevant morphological traits derived from complex biomedical imaging datasets, and its applications extend beyond faces. Nevertheless, these different phenotyping strategies capture different genetic influences on craniofacial shape. Thus, it remains valuable to explore these strategies individually and in combination to gain a more comprehensive understanding of the genetic factors underlying craniofacial shape and related traits. Author Summary: Advancements linking variation in the human genome to phenotypes have rapidly evolved in recent decades and have revealed that most human traits are influenced by genetic variants to at least some degree. While many traits, such as stature, are straightforward to acquire and investigate, the multivariate and multipartite nature of facial shape makes quantification more challenging. In this study, we compared the impact of different facial phenotyping approaches on gene mapping outcomes. Our findings suggest that the choice of facial phenotyping method has an impact on apparent trait heritability and the ability to detect genetic association signals. These results offer valuable insights into the importance of phenotyping in genetic investigations, especially when dealing with highly complex morphological traits.

11.
Nat Cell Biol ; 26(2): 250-262, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38321203

RESUMO

A key aspect of nutrient absorption is the exquisite division of labour across the length of the small intestine, with individual nutrients taken up at different proximal:distal positions. For millennia, the small intestine was thought to comprise three segments with indefinite borders: the duodenum, jejunum and ileum. By examining the fine-scale longitudinal transcriptional patterns that span the mouse and human small intestine, we instead identified five domains of nutrient absorption that mount distinct responses to dietary changes, and three regional stem cell populations. Molecular domain identity can be detected with machine learning, which provides a systematic method to computationally identify intestinal domains in mice. We generated a predictive model of transcriptional control of domain identity and validated the roles of Ppar-δ and Cdx1 in patterning lipid metabolism-associated genes. These findings represent a foundational framework for the zonation of absorption across the mammalian small intestine.


Assuntos
Duodeno , Intestino Delgado , Humanos , Camundongos , Animais , Intestino Delgado/metabolismo , Duodeno/metabolismo , Intestinos , Jejuno/metabolismo , Íleo/metabolismo , Mamíferos
12.
Cancer Discov ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742767

RESUMO

Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here we report NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival.

13.
bioRxiv ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38106188

RESUMO

Human craniofacial shape is highly variable yet highly heritable with genetic variants interacting through multiple layers of development. Here, we hypothesize that Mendelian phenotypes represent the extremes of a phenotypic spectrum and, using achondroplasia as an example, we introduce a syndrome-informed phenotyping approach to identify genomic loci associated with achondroplasia-like facial variation in the normal population. We compared three-dimensional facial scans from 43 individuals with achondroplasia and 8246 controls to calculate achondroplasia-like facial scores. Multivariate GWAS of the control scores revealed a polygenic basis for normal facial variation along an achondroplasia-specific shape axis, identifying genes primarily involved in skeletal development. Jointly modeling these genes in two independent control samples showed craniofacial effects approximating the characteristic achondroplasia phenotype. These findings suggest that both complex and Mendelian genetic variation act on the same developmentally determined axes of facial variation, providing new insights into the genetic intersection of complex traits and Mendelian disorders.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa