Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 595(7866): 181-188, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34194044

RESUMO

Computational social science is more than just large repositories of digital data and the computational methods needed to construct and analyse them. It also represents a convergence of different fields with different ways of thinking about and doing science. The goal of this Perspective is to provide some clarity around how these approaches differ from one another and to propose how they might be productively integrated. Towards this end we make two contributions. The first is a schema for thinking about research activities along two dimensions-the extent to which work is explanatory, focusing on identifying and estimating causal effects, and the degree of consideration given to testing predictions of outcomes-and how these two priorities can complement, rather than compete with, one another. Our second contribution is to advocate that computational social scientists devote more attention to combining prediction and explanation, which we call integrative modelling, and to outline some practical suggestions for realizing this goal.


Assuntos
Simulação por Computador , Ciência de Dados/métodos , Previsões/métodos , Modelos Teóricos , Ciências Sociais/métodos , Objetivos , Humanos
2.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34035166

RESUMO

As algorithms are increasingly applied to screen applicants for high-stakes decisions in employment, lending, and other domains, concerns have been raised about the effects of algorithmic monoculture, in which many decision-makers all rely on the same algorithm. This concern invokes analogies to agriculture, where a monocultural system runs the risk of severe harm from unexpected shocks. Here, we show that the dangers of algorithmic monoculture run much deeper, in that monocultural convergence on a single algorithm by a group of decision-making agents, even when the algorithm is more accurate for any one agent in isolation, can reduce the overall quality of the decisions being made by the full collection of agents. Unexpected shocks are therefore not needed to expose the risks of monoculture; it can hurt accuracy even under "normal" operations and even for algorithms that are more accurate when used by only a single decision-maker. Our results rely on minimal assumptions and involve the development of a probabilistic framework for analyzing systems that use multiple noisy estimates of a set of alternatives.


Assuntos
Algoritmos , Cultura , Modelos Teóricos , Seguridade Social , Humanos
3.
Proc Natl Acad Sci U S A ; 117(48): 30096-30100, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32723823

RESUMO

Preventing discrimination requires that we have means of detecting it, and this can be enormously difficult when human beings are making the underlying decisions. As applied today, algorithms can increase the risk of discrimination. But as we argue here, algorithms by their nature require a far greater level of specificity than is usually possible with human decision making, and this specificity makes it possible to probe aspects of the decision in additional ways. With the right changes to legal and regulatory systems, algorithms can thus potentially make it easier to detect-and hence to help prevent-discrimination.

5.
Proc Natl Acad Sci U S A ; 115(48): E11221-E11230, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30413619

RESUMO

Networks provide a powerful formalism for modeling complex systems by using a model of pairwise interactions. But much of the structure within these systems involves interactions that take place among more than two nodes at once-for example, communication within a group rather than person to person, collaboration among a team rather than a pair of coauthors, or biological interaction between a set of molecules rather than just two. Such higher-order interactions are ubiquitous, but their empirical study has received limited attention, and little is known about possible organizational principles of such structures. Here we study the temporal evolution of 19 datasets with explicit accounting for higher-order interactions. We show that there is a rich variety of structure in our datasets but datasets from the same system types have consistent patterns of higher-order structure. Furthermore, we find that tie strength and edge density are competing positive indicators of higher-order organization, and these trends are consistent across interactions involving differing numbers of nodes. To systematically further the study of theories for such higher-order structures, we propose higher-order link prediction as a benchmark problem to assess models and algorithms that predict higher-order structure. We find a fundamental difference from traditional pairwise link prediction, with a greater role for local rather than long-range information in predicting the appearance of new interactions.

6.
Proc Natl Acad Sci U S A ; 114(1): 33-38, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27999183

RESUMO

Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods through the "seed set expansion problem": given a subset [Formula: see text] of nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of "landing probabilities" of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work, we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameter [Formula: see text] that depends on the block model parameters. This connection provides a formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance, despite being simple linear classification rules, and are even competitive with belief propagation.

7.
Proc Natl Acad Sci U S A ; 109(6): 1868-73, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308334

RESUMO

A dilemma faced by teachers, and increasingly by designers of educational software, is the trade-off between teaching new material and reviewing what has already been taught. Complicating matters, review is useful only if it is neither too soon nor too late. Moreover, different students need to review at different rates. We present a mathematical model that captures these issues in idealized form. The student's needs are modeled as constraints on the schedule according to which educational material and review are spaced over time. Our results include algorithms to construct schedules that adhere to various spacing constraints, and bounds on the rate at which new material can be introduced under these schedules.


Assuntos
Educação , Modelos Educacionais , Estudantes , Maleabilidade , Fatores de Tempo
8.
Proc Natl Acad Sci U S A ; 109(16): 5962-6, 2012 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-22474360

RESUMO

The concept of contagion has steadily expanded from its original grounding in epidemic disease to describe a vast array of processes that spread across networks, notably social phenomena such as fads, political opinions, the adoption of new technologies, and financial decisions. Traditional models of social contagion have been based on physical analogies with biological contagion, in which the probability that an individual is affected by the contagion grows monotonically with the size of his or her "contact neighborhood"--the number of affected individuals with whom he or she is in contact. Whereas this contact neighborhood hypothesis has formed the underpinning of essentially all current models, it has been challenging to evaluate it due to the difficulty in obtaining detailed data on individual network neighborhoods during the course of a large-scale contagion process. Here we study this question by analyzing the growth of Facebook, a rare example of a social process with genuinely global adoption. We find that the probability of contagion is tightly controlled by the number of connected components in an individual's contact neighborhood, rather than by the actual size of the neighborhood. Surprisingly, once this "structural diversity" is controlled for, the size of the contact neighborhood is in fact generally a negative predictor of contagion. More broadly, our analysis shows how data at the size and resolution of the Facebook network make possible the identification of subtle structural signals that go undetected at smaller scales yet hold pivotal predictive roles for the outcomes of social processes.


Assuntos
Correio Eletrônico/estatística & dados numéricos , Disseminação de Informação/métodos , Modelos Teóricos , Rede Social , Coleta de Dados , Correio Eletrônico/tendências , Feminino , Humanos , Masculino , Opinião Pública
9.
Proc Natl Acad Sci U S A ; 108(5): 1771-6, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21199953

RESUMO

It is not uncommon for certain social networks to divide into two opposing camps in response to stress. This happens, for example, in networks of political parties during winner-takes-all elections, in networks of companies competing to establish technical standards, and in networks of nations faced with mounting threats of war. A simple model for these two-sided separations is the dynamical system dX/dt = X(2), where X is a matrix of the friendliness or unfriendliness between pairs of nodes in the network. Previous simulations suggested that only two types of behavior were possible for this system: Either all relationships become friendly or two hostile factions emerge. Here we prove that for generic initial conditions, these are indeed the only possible outcomes. Our analysis yields a closed-form expression for faction membership as a function of the initial conditions and implies that the initial amount of friendliness in large social networks (started from random initial conditions) determines whether they will end up in intractable conflict or global harmony.

10.
Sci Rep ; 14(1): 13730, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877083

RESUMO

The Friendship Paradox is a simple and powerful statement about node degrees in a graph. However, it only applies to undirected graphs with no edge weights, and the only node characteristic it concerns is degree. Since many social networks are more complex than that, it is useful to generalize this phenomenon, if possible, and a number of papers have proposed different generalizations. Here, we unify these generalizations in a common framework, retaining the focus on undirected graphs and allowing for weighted edges and for numeric node attributes other than degree to be considered, since this extension allows for a clean characterization and links to the original concepts most naturally. While the original Friendship Paradox and the Weighted Friendship Paradox hold for all graphs, considering non-degree attributes actually makes the extensions fail around 50% of the time, given random attribute assignment. We provide simple correlation-based rules to see whether an attribute-based version of the paradox holds. In addition to theory, our simulation and data results show how all the concepts can be applied to synthetic and real networks. Where applicable, we draw connections to prior work to make this an accessible and comprehensive paper that lets one understand the math behind the Friendship Paradox and its basic extensions.

11.
Proc Natl Acad Sci U S A ; 107(52): 22436-41, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21148099

RESUMO

We investigate the extent to which social ties between people can be inferred from co-occurrence in time and space: Given that two people have been in approximately the same geographic locale at approximately the same time, on multiple occasions, how likely are they to know each other? Furthermore, how does this likelihood depend on the spatial and temporal proximity of the co-occurrences? Such issues arise in data originating in both online and offline domains as well as settings that capture interfaces between online and offline behavior. Here we develop a framework for quantifying the answers to such questions, and we apply this framework to publicly available data from a social media site, finding that even a very small number of co-occurrences can result in a high empirical likelihood of a social tie. We then present probabilistic models showing how such large probabilities can arise from a natural model of proximity and co-occurrence in the presence of social ties. In addition to providing a method for establishing some of the first quantifiable estimates of these measures, our findings have potential privacy implications, particularly for the ways in which social structures can be inferred from public online records that capture individuals' physical locations over time.


Assuntos
Comunicação , Simulação por Computador , Comportamento Social , Algoritmos , Humanos , Modelos Teóricos , Probabilidade
12.
PNAS Nexus ; 2(3): pgad003, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36926225

RESUMO

Contact tracing is a key tool for managing epidemic diseases like HIV, tuberculosis, COVID-19, and monkeypox. Manual investigations by human-contact tracers remain a dominant way in which this is carried out. This process is limited by the number of contact tracers available, who are often overburdened during an outbreak or epidemic. As a result, a crucial decision in any contact tracing strategy is, given a set of contacts, which person should a tracer trace next? In this work, we develop a formal model that articulates these questions and provides a framework for comparing contact tracing strategies. Through analyzing our model, we give provably optimal prioritization policies via a clean connection to a tool from operations research called a "branching bandit". Examining these policies gives qualitative insight into trade-offs in contact tracing applications.

13.
Sci Rep ; 13(1): 2074, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36746993

RESUMO

The Friendship Paradox-the principle that "your friends have more friends than you do"-is a combinatorial fact about degrees in a graph; but given that many web-based social activities are correlated with a user's degree, this fact has been taken more broadly to suggest the empirical principle that "your friends are also more active than you are." This Generalized Friendship Paradox, the notion that any attribute positively correlated with degree obeys the Friendship Paradox, has been established mathematically in a network-level version that essentially aggregates uniformly over all the edges of a network. Here we show, however, that the natural node-based version of the Generalized Friendship Paradox-which aggregates over nodes, not edges-may fail, even for degree-attribute correlations approaching 1. Whether this version holds depends not only on degree-attribute correlations, but also on the underlying network structure and thus can't be said to be a universal phenomenon. We establish both positive and negative results for this node-based version of the Generalized Friendship Paradox and consider its implications for social-network data.

14.
Sci Adv ; 9(1): eabq3200, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608141

RESUMO

Homophily is the seemingly ubiquitous tendency for people to connect and interact with other individuals who are similar to them. This is a well-documented principle and is fundamental for how society organizes. Although many social interactions occur in groups, homophily has traditionally been measured using a graph model, which only accounts for pairwise interactions involving two individuals. Here, we develop a framework using hypergraphs to quantify homophily from group interactions. This reveals natural patterns of group homophily that appear with gender in scientific collaboration and political affiliation in legislative bill cosponsorship and also reveals distinctive gender distributions in group photographs, all of which cannot be fully captured by pairwise measures. At the same time, we show that seemingly natural ways to define group homophily are combinatorially impossible. This reveals important pitfalls to avoid when defining and interpreting notions of group homophily, as higher-order homophily patterns are governed by combinatorial constraints that are independent of human behavior but are easily overlooked.

15.
Perspect Psychol Sci ; : 17456916231212138, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38085919

RESUMO

More and more machine learning is applied to human behavior. Increasingly these algorithms suffer from a hidden-but serious-problem. It arises because they often predict one thing while hoping for another. Take a recommender system: It predicts clicks but hopes to identify preferences. Or take an algorithm that automates a radiologist: It predicts in-the-moment diagnoses while hoping to identify their reflective judgments. Psychology shows us the gaps between the objectives of such prediction tasks and the goals we hope to achieve: People can click mindlessly; experts can get tired and make systematic errors. We argue such situations are ubiquitous and call them "inversion problems": The real goal requires understanding a mental state that is not directly measured in behavioral data but must instead be inverted from the behavior. Identifying and solving these problems require new tools that draw on both behavioral and computational science.

16.
Proc Natl Acad Sci U S A ; 105(12): 4633-8, 2008 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-18353985

RESUMO

Although information, news, and opinions continuously circulate in the worldwide social network, the actual mechanics of how any single piece of information spreads on a global scale have been a mystery. Here, we trace such information-spreading processes at a person-by-person level using methods to reconstruct the propagation of massively circulated Internet chain letters. We find that rather than fanning out widely, reaching many people in very few steps according to "small-world" principles, the progress of these chain letters proceeds in a narrow but very deep tree-like pattern, continuing for several hundred steps. This suggests a new and more complex picture for the spread of information through a social network. We describe a probabilistic model based on network clustering and asynchronous response times that produces trees with this characteristic structure on social-network data.


Assuntos
Correspondência como Assunto , Disseminação de Informação , Internet , Modelos Estatísticos , Apoio Social , Fatores de Tempo
17.
Sci Rep ; 11(1): 13360, 2021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34172813

RESUMO

Homophily-the tendency of nodes to connect to others of the same type-is a central issue in the study of networks. Here we take a local view of homophily, defining notions of first-order homophily of a node (its individual tendency to link to similar others) and second-order homophily of a node (the aggregate first-order homophily of its neighbors). Through this view, we find a surprising result for homophily values that applies with only minimal assumptions on the graph topology. It can be phrased most simply as "in a graph of red and blue nodes, red friends of red nodes are on average more homophilous than red friends of blue nodes". This gap in averages defies simple intuitive explanations, applies to globally heterophilous and homophilous networks and is reminiscent of but structually distinct from the Friendship Paradox. The existence of this gap suggests intrinsic biases in homophily measurements between groups, and hence is relevant to empirical studies of homophily in networks.

18.
Am Econ Rev ; 105(5): 491-495, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-27199498
19.
Phys Rev Lett ; 103(19): 198701, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-20365960

RESUMO

We model a close-knit community of friends and enemies as a fully connected network with positive and negative signs on its edges. Theories from social psychology suggest that certain sign patterns are more stable than others. This notion of social "balance" allows us to define an energy landscape for such networks. Its structure is complex: numerical experiments reveal a landscape dimpled with local minima of widely varying energy levels. We derive rigorous bounds on the energies of these local minima and prove that they have a modular structure that can be used to classify them.


Assuntos
Meio Social , Termodinâmica
20.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 2): 016115, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19257115

RESUMO

Superlinear scaling in cities, which appears in sociological quantities such as economic productivity and creative output relative to urban population size, has been observed, but not been given a satisfactory theoretical explanation. Here we provide a network model for the superlinear relationship between population size and innovation found in cities, with a reasonable range for the exponent.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa