Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 88(5): 2167-2178, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35692042

RESUMO

PURPOSE: Cardiac MRI represents the gold standard to determine myocardial function. However, the current clinical standard protocol, a segmented Cartesian acquisition, is time-consuming and can lead to compromised image quality in the case of arrhythmia or dyspnea. In this article, a machine learning-based reconstruction of undersampled spiral k-space data is presented to enable free breathing real-time cardiac MRI with good image quality and short reconstruction times. METHODS: Data were acquired in free breathing with a 2D spiral trajectory corrected by the gradient system transfer function. Undersampled data were reconstructed by a variational network (VN), which was specifically adapted to the non-Cartesian sampling pattern. The network was trained with data from 11 subjects. Subsequently, the imaging technique was validated in 14 subjects by quantifying the difference to a segmented reference acquisition, an expert reader study, and by comparing derived volumes and functional parameters with values obtained using the current clinical gold standard. RESULTS: The scan time for the entire heart was below 1 min. The VN reconstructed data in about 0.9 s per image, which is considerably shorter than conventional model-based approaches. The VN furthermore performed better than a U-Net and not inferior to a low-rank plus sparse model in terms of achieved image quality. Functional parameters agreed, on average, with reference data. CONCLUSIONS: The proposed VN method enables real-time cardiac imaging with both high spatial and temporal resolution in free breathing and with short reconstruction time.


Assuntos
Imageamento por Ressonância Magnética , Respiração , Coração/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Cintilografia
2.
Z Med Phys ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37684119

RESUMO

INTRODUCTION: Deep learning-based approaches are increasingly being used for the reconstruction of accelerated MRI scans. However, presented analyses are frequently lacking in-detail evaluation of basal measures like resolution or signal-to-noise ratio. To help closing this gap, spatially resolved maps of image resolution and noise enhancement (g-factor) are determined and assessed for typical model- and data-driven MR reconstruction methods in this paper. METHODS: MR data from a routine brain scan of a patient were undersampled in retrospect at R = 4 and reconstructed using two data-driven (variational network (VN), U-Net) and two model based reconstructions methods (GRAPPA, TV-constrained compressed sensing). Local resolution was estimated by the width of the main-lobe of a local point-spread function, which was determined for every single pixel by reconstructing images with an additional small perturbation. G-factor maps were determined using a multiple replica method. RESULTS: GRAPPA showed good spatial resolution, but increased g-factors (1.43-1.84, 75% quartile) over all other methods. The images delivered from compressed sensing suffered most from low local resolution, in particular in homogeneous areas of the image. VN and U-Net show similar resolution with mostly moderate local blurring, slightly better for U-Net. For all methods except GRAPPA the resolution as well as the g-factors depend on the anatomy and the direction of undersampling. CONCLUSION: Objective image quality parameters, local resolution and g-factors have been determined. The examined data driven methods show less local blurring than compressed sensing. The noise enhancement for reconstructions using CS, VN and U-Net is elevated at anatomical contours but is drastically reduced with respect to GRAPPA. Overall, the applied framework provides the possibility for more detailed analysis of novel reconstruction approaches incorporating non-linear and non-stationary transformations.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa