RESUMO
The taxonomic position of strain BMG 8361T, isolated from sandstone collected in the Sahara Desert of Southern Tunisia, was refined through a polyphasic taxonomic investigation. Colonies of BMG 8361T were pale-orange coloured, irregular with a dry surface and produced a diffusible pink or brown pigment depending on media. The Gram-positive cells were catalase-positive and oxidase-negative. The strain exhibited growth at 10-40â°C and pH values ranging from 5.5 to 9.0, with optima at 28-35â°C and pH 6.5-8.0. Additionally, BMG 8361T demonstrated the ability to grow in the presence of up to 1â% NaCl (w/v) concentration. The peptidoglycan of the cell wall contained meso-diaminopimelic acid, glucose, galactose, xylose, ribose, and rhamnose. The predominant menaquinones consisted of MK-9(H4) and MK-9. The main polar lipids were phosphatidylcholine, phosphatidylinositol, glycophosphatidylinositol, diphosphatidylglycerol, phosphatidylethanolamine, and two unidentified lipids. Major cellular fatty acids were iso-C16â:â0, iso-C16â:â1 h, and C17â:â1 ω8c. Phylogenetic analyses based on both the 16S rRNA gene and whole-genome sequences assigned strain BMG 8361T within the genus Blastococcus. The highest pairwise sequence similarity observed in the 16S rRNA gene was 99.5â% with Blastococcus haudaquaticus AT 7-14T. However, when considering digital DNA-DNA hybridization and average nucleotide identity, the highest values, 48.4 and 86.58â%, respectively, were obtained with Blastococcus colisei BMG 822T. These values significantly undershoot the recommended thresholds for establishing new species, corroborating the robust support for the distinctive taxonomic status of strain BMG 8361T within the genus Blastococcus. In conjunction with the phenotyping results, this compelling evidence leads to the proposal of a novel species we named Blastococcus brunescens sp. nov. with BMG 8361T (=DSM 46845T=CECT 8880T) as the type strain.
Assuntos
Actinomycetales , Ácidos Graxos , Tunísia , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de BasesRESUMO
A nitrogen-fixing actinobacterium strain (Cc1.17T) isolated from a root nodule of Colletia cruciata was subjected to polyphasic taxonomic studies. The strain was characterized by the presence of meso-diaminopimelic acid in its peptidoglycan, galactose, glucose, mannose, rhamnose, ribose and xylose as cell-wall sugars, phosphatidylinositol, diphosphatidylglycerol, glycophospholipids, phosphatidylglycerol, glycophospholipid and uncharacterized lipids as its polar lipids, and C16â:â0, iso-C16â:â0, C17â: 1 ω9 and C18â:â1 ω9 as major fatty acids (>10â%). Strain Cc1.17T showed 16S rRNA gene sequence similarities of 97.4-99.8â% to validly named Frankia species. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain Cc1.17T in a new lineage within the genus Frankia. Digital DNA-DNA hybridization and average nucleotide identity values between strain Cc1.17T and its closest phylogenomic neighbours were well below the thresholds recommended for prokaryotic species delineation. Therefore, strain Cc1.17T (=DSM 43829T=CECT 9313T) merits recognition as the type strain of a new species for which the name Frankia colletiae sp. nov. is proposed.
Assuntos
Frankia , Rubiaceae , Ácidos Graxos/química , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Rubiaceae/genéticaRESUMO
A comprehensive polyphasic investigation was conducted to elucidate the taxonomic position of an actinobacterium, designated BMG 814T, which was isolated from the historic ruins of Carthage city in Tunisia. It grew as pink-orange pigmented colonies and displayed versatile growth capabilities, thriving within a temperature range of 20-40â°C, across a pH spectrum ranging from pH 5.5 to 10 and in the presence of up to 4â% NaCl. Chemotaxonomic investigations unveiled specific cell components, including diphosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, glycophosphatidylinositol, an unidentified aminoglycophospholipid, six unidentified aminolipids, two unidentified phospholipids and one unidentified lipid in its polar lipid profile. Furthermore, galactose, glucose and ribose were identified as the primary cell-wall sugars. Major menaquinones identified were MK-9(H4), MK-9(H2) and MK-9, while major fatty acids comprised iso-C15â:â0, iso-C16â:â0, C17â:â1 ω8c and C18â:â1 ω9c. Through phylogenetic analysis based on the 16S rRNA gene sequence, the strain was positioned within the genus Blastococcus, with Blastococcus capsiensis BMG 804T showing the closest relationship (99.1â%). In light of this, draft genomes for both strains, BMG 814T and BMG 804T, were sequenced in this study, and comparative analysis revealed that strain BMG 814T exhibited digital DNA-DNA hybridization and average nucleotide identity values below the recommended thresholds for demarcating new species with all available genomes of type strains of validly names species. Based on the polyphasic taxonomy assessment, strain BMG 814T (=DSM 46848T=CECT 8878T) was proposed as the type strain of a novel species named Blastococcus carthaginiensis sp. nov.
Assuntos
Actinomycetales , Ácidos Graxos , Tunísia , Filogenia , RNA Ribossômico 16S/genética , Ácidos Graxos/química , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de BasesRESUMO
A genome led phylophasic study was designed to determine the taxonomic status of a strain, DSM 45956, recovered from a Saharan desert soil. A wealth of taxonomic data, including average nucleotide identity and DNA:DNA hybridization (DDH) values, showed that the isolate and the type strains of Actinopolyspora lacussalsi and Actinopolyspora righensis belong to the same species. Consequently, it is proposed that A. righensis is a heterotypic synonym of A. lacussalsi. Similarly, DDH values and associated phenotypic data show that A. lacussalsi contains two subspecies, A. lacussalsi subsp. lacussalsi and A. lacussalsi subsp. righensis which includes isolate DSM 45956.
Assuntos
Actinomycetales , Ácidos Graxos , Actinobacteria , Actinomycetales/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/análise , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A novel Gram-negative, facultative anaerobic, rod-shaped, and non-motile bacterium with bio-degradation potential of polycyclic aromatic hydrocarbons (PAHs) and uranium bio-reduction, designated as RCRI7T, was isolated from Qurugöl Lake water near Tabriz city. Strain RCRI7T can grow in the absence of NaCl and tolerates up to 3% NaCl (optimum, 0-0.5%), at the temperature range of 4-45 °C (optimum, 30 °C) and a pH range of 6-9 (optimum, pH 7 ± 0.5). Results of phylogenetic analysis based on 16S rRNA gene sequence indicated that strain RCRI7T is affiliated with the genus Shewanella, most closely related to Shewanella xiamenensis S4T (99.1%) and Shewanella putrefaciens JCM 20190T (98.9%). The genomic DNA G+C content of strain RCRI7T is 41 mol%. The major fatty acids are C16:1ω9c, C18:1ω9c and iso-C17:1ω5c. The OrthoANI and ANIb values between RCRI7T and Shewanella xiamenensis S4T were 87.4% and 87.7%, and between RCRI7T and Shewanella putrefaciens JCM 20190T were 79.5% and 79.7%, respectively. Strain RCRI7T displayed dDDH values of 30.2% and 39.8% to Shewanella xiamenensis S4T and Shewanella putrefaciens JCM 20190T, respectively. The major polar lipids include phosphatidylglycerol (PG) and phosphatidylethanolamine (PE). The respiratory quinone is Q8. Based on the polyphasic evidence presented in this paper, strain RCRI7T is considered to represent a novel species, with bioremediation potential, in the genus Shewanella, for which the name Shewanella azerbaijanica sp. nov. is proposed. The type strain is RCRI7T (= JCM 17276T) (= KCTC 62476T).
Assuntos
Shewanella , Cloreto de Sódio , Técnicas de Tipagem Bacteriana , Biodegradação Ambiental , DNA Bacteriano/genética , Ácidos Graxos , Fosfolipídeos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Shewanella/genéticaRESUMO
A new actinobacterium strain, designated BMG 823T, was isolated from a limestone sample collected in Tunisia. Its taxonomic position was scrutinized using a polyphasic approach. Colonies of strain BMG 823T were pink orange-coloured, regular and had a moist surface. Cells are Gram-stain-positive, catalase-negative and oxidase-negative. The strain grew at pH 5.5-9, 10-40 °C and in presence of up to 4â% NaCl (w/v). Chemotaxonomically, strain BMG 823T was characterized by cell-wall type III containing meso-diaminopimelic acid as diamino acid, glucose, ribose and rhamnose as whole-cell sugars, MK-9(H4) as predominant menaquinone, and phosphatidylcholine, diphosphadidylglycerol, phosphatidethanolamine, phosphatidylcholine, phosphatidylinositol, unidentified glycolipid, unidentified aminophospholipids and unidentified glycophospholipid as major polar lipids. The fatty acid profile consisted of iso-C16â:â0 and iso-C17â:â1 ω9. Phylogenetic trees based on 16S rRNA gene and genome sequences placed strain BMG 823T within the genus Blastococcus and separated it from all type strains of validly published species. Comparison of 16S rRNA gene sequence similarity, digital DNA-DNA hybridization and average nucleotide identity indicated that strain BMG 823T was most closely related to Blastococcus litoris DSM 106127T and Blastococcus colisei BMG 822T with pairwise values well below the species differentiation thresholds. The distinct phenotypic and genotypic features of strain BMG 823T (=DSM 46838T=CECT 8881T) within the genus Blastococcus warrant its recognition as the type strain for the new species for which we propose the name Blastococcus tunisiensis sp. nov.
Assuntos
Actinomycetales , Carbonato de Cálcio , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfatidilcolinas , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , TunísiaRESUMO
A new strain belonging to the genus Kocuria, designed PT10, was isolated from irradiated roots of the xerophyte Panicum turgidum. Isolate PT10 is a Gram-positive, coccoid, aerobic and ionizing-radiation (IR)-resistant actinobacterium. PT10 has shown an ability to survive under extreme conditions, such as gamma irradiation, desiccation and high concentration of hydrogen peroxide. Phenotypic, chemotaxonomic and comparative genome analyses support the assignment of strain PT10 (LMG 31102 = DSM 108617) as Kocuria rhizophila. The complete genome sequence of PT10 consists of one chromosome (2,656,287 bps), with a 70.7% G + C content and comprises 2481 protein-coding sequences. A total of 1487 proteins were identified by LC-MS/MS profiling. In silico analyses revealed that the proteome of the oxidation-tolerant PT10 possesses several features explaining its IR-resistant phenotype and many adaptive pathways implicated in response to environmental pressures - desiccation, cold, reactive oxygen species and other stressors.
Assuntos
Genes Bacterianos , Micrococcaceae/genética , Panicum/microbiologia , Tolerância a Radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dessecação , Raios gama , Micrococcaceae/patogenicidade , Micrococcaceae/efeitos da radiação , Estresse OxidativoRESUMO
A novel strain of the genus Promicromonospora, designated PT9T, was recovered from irradiated roots of the xerophyte Panicum turgidum collected from the Ksar Ghilane oasis in southern Tunisia. Strain PT9T is aerobic, non-spore-forming, Gram- positive actinomycete that produces branched hyphae and forms white to yellowish-white colonies. Chemotaxonomic features, including fatty acids, whole cell sugars and polar lipid profiles, support the assignment of PT9T to the genus Promicromonospora. The genomic relatedness indexes based on DNA-DNA hybridization and average nucleotide identity values revealed a significant genomic divergence between strain PT9T and all sequenced type strains of the taxon. Phylogenomic analysis showed that isolate PT9T was most closely related to Promicromonospora soli CGMCC 4.7398T. Phenotypic and phylogenomic analyses suggest that isolate PT9T represents a novel species of the genus Promicromonospora, for which the name Promicromonospora panici sp. nov. is proposed. The type strain is PT9T (LMG 31103T = DSM 108613T).The isolate PT9T is an ionizing-radiation-resistant actinobacterium (D10 value = 2.6 kGy), with resistance to desiccation and hydrogen peroxide. The complete genome sequence of PT9T consists of 6,582,650 bps with 71.2% G+C content and 6291 protein-coding sequences. This genome will help to decipher the microbial genetic bases for ionizing-radiation resistance mechanisms including the response to oxidative stress.
Assuntos
Actinobacteria/classificação , Panicum/microbiologia , Filogenia , Radiação Ionizante , Actinobacteria/isolamento & purificação , Actinobacteria/efeitos da radiação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , RNA Ribossômico 16S , Análise de Sequência de DNA , TunísiaRESUMO
BACKGROUND: The genus Trichococcus currently contains nine species: T. flocculiformis, T. pasteurii, T. palustris, T. collinsii, T. patagoniensis, T. ilyis, T. paludicola, T. alkaliphilus, and T. shcherbakoviae. In general, Trichococcus species can degrade a wide range of carbohydrates. However, only T. pasteurii and a non-characterized strain of Trichococcus, strain ES5, have the capacity of converting glycerol to mainly 1,3-propanediol. Comparative genomic analysis of Trichococcus species provides the opportunity to further explore the physiological potential and uncover novel properties of this genus. RESULTS: In this study, a genotype-phenotype comparative analysis of Trichococcus strains was performed. The genome of Trichococcus strain ES5 was sequenced and included in the comparison with the other nine type strains. Genes encoding functions related to e.g. the utilization of different carbon sources (glycerol, arabinan and alginate), antibiotic resistance, tolerance to low temperature and osmoregulation could be identified in all the sequences analysed. T. pasteurii and Trichococcus strain ES5 contain a operon with genes encoding necessary enzymes for 1,3-PDO production from glycerol. All the analysed genomes comprise genes encoding for cold shock domains, but only five of the Trichococcus species can grow at 0 °C. Protein domains associated to osmoregulation mechanisms are encoded in the genomes of all Trichococcus species, except in T. palustris, which had a lower resistance to salinity than the other nine studied Trichococcus strains. CONCLUSIONS: Genome analysis and comparison of ten Trichococcus strains allowed the identification of physiological traits related to substrate utilization and environmental stress resistance (e.g. to cold and salinity). Some substrates were used by single species, e.g. alginate by T. collinsii and arabinan by T. alkaliphilus. Strain ES5 may represent a subspecies of Trichococcus flocculiformis and contrary to the type strain (DSM 2094T), is able to grow on glycerol with the production of 1,3-propanediol.
Assuntos
Carnobacteriaceae/genética , Carnobacteriaceae/fisiologia , Técnicas de Tipagem Bacteriana , Carnobacteriaceae/metabolismo , Fenótipo , Filogenia , Propilenoglicóis/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
Natural attenuation of heavy metals occurs via coupled microbial iron cycling and metal precipitation in creeks impacted by acid mine drainage (AMD). Here, we describe the isolation, characterization, and genomic sequencing of two iron-oxidizing bacteria (FeOB) species: Thiomonas ferrovorans FB-6 and Thiomonas metallidurans FB-Cd, isolated from slightly acidic (pH 6.3), Fe-rich, AMD-impacted creek sediments. These strains precipitated amorphous iron oxides, lepidocrocite, goethite, and magnetite or maghemite and grew at a pH optimum of 5.5. While Thiomonas spp. are known as mixotrophic sulfur oxidizers and As oxidizers, the FB strains oxidized Fe, which suggests they can efficiently remove Fe and other metals via coprecipitation. Previous evidence for Thiomonas sp. Fe oxidation is largely ambiguous, possibly because of difficulty demonstrating Fe oxidation in heterotrophic/mixotrophic organisms. Therefore, we also conducted a genomic analysis to identify genetic mechanisms of Fe oxidation, other metal transformations, and additional adaptations, comparing the two FB strain genomes with 12 other Thiomonas genomes. The FB strains fall within a relatively novel group of Thiomonas strains that includes another strain (b6) with solid evidence of Fe oxidation. Most Thiomonas isolates, including the FB strains, have the putative iron oxidation gene cyc2, but only the two FB strains possess the putative Fe oxidase genes mtoAB The two FB strain genomes contain the highest numbers of strain-specific gene clusters, greatly increasing the known Thiomonas genetic potential. Our results revealed that the FB strains are two distinct novel species of Thiomonas with the genetic potential for bioremediation of AMD via iron oxidation.IMPORTANCE As AMD moves through the environment, it impacts aquatic ecosystems, but at the same time, these ecosystems can naturally attenuate contaminated waters via acid neutralization and catalyzing metal precipitation. This is the case in the former Ronneburg uranium-mining district, where AMD impacts creek sediments. We isolated and characterized two iron-oxidizing Thiomonas species that are mildly acidophilic to neutrophilic and that have two genetic pathways for iron oxidation. These Thiomonas species are well positioned to naturally attenuate AMD as it discharges across the landscape.
Assuntos
Burkholderiales/metabolismo , Ferro/metabolismo , Rios/microbiologia , Águas Residuárias/microbiologia , Alemanha , Mineração , OxirreduçãoRESUMO
Kiloniella laminariae is a true marine bacterium and the first member of the family and order, the Kiloniellaceae and Kiloniellales. K. laminariae LD81T (= DSM 19542T) was isolated from the marine macroalga Saccharina latissima and is a mesophilic, typical marine chemoheterotrophic aerobic bacterium with antifungal activity. Phylogenetic analysis of 16S rRNA gene sequence revealed the similarity of K. laminariae LD81T not only with three validly described species of the genus Kiloniella, but also with undescribed isolates and clone sequences from marine samples in the range of 93.6-96.7%. We report on the analysis of the draft genome of this alphaproteobacterium and describe some selected features. The 4.4 Mb genome has a G + C content of 51.4%, contains 4213 coding sequences including 51 RNA genes as well as 4162 protein-coding genes, and is a part of the Genomic Encyclopaedia of Bacteria and Archaea (GEBA) project. The genome provides insights into a number of metabolic properties, such as carbon and sulfur metabolism, and indicates the potential for denitrification and the biosynthesis of secondary metabolites. Comparative genome analysis was performed with K. laminariae LD81T and the animal-associated species Kiloniella majae M56.1T from a spider crab, Kiloniella spongiae MEBiC09566T from a sponge as well as Kiloniella litopenai P1-1 from a white shrimp, which all inhabit quite different marine habitats. The analysis revealed that the K. laminariae LD81T contains 1397 unique genes, more than twice the amount of the other species. Unique among others is a mixed PKS/NRPS biosynthetic gene cluster with similarity to the biosynthetic gene cluster responsible for the production of syringomycin.
Assuntos
Alphaproteobacteria/genética , Organismos Aquáticos/genética , Genômica , Filogenia , Alphaproteobacteria/classificação , Animais , Organismos Aquáticos/classificação , Organismos Aquáticos/microbiologia , Proteínas de Bactérias/genética , Composição de Bases , Phaeophyceae/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da EspécieRESUMO
A polyphasic study was undertaken to establish the position of a Streptomyces strain, isolate PRKS01-65T, recovered from sand dune soil collected at Parangkusumo, Yogyakarta Province, Java, Indonesia. A combination of chemotaxonomic, cultural and morphological properties confirmed its position in the genus of Streptomyces. Comparative 16S rRNA gene sequence analyses showed that the isolate was most closely related to Streptomyces leeuwenhoekii C34T (99.9â% similarity) and loosely associated with the type strains of Streptomyces chiangmaiensis (98.7â% similarity) and Streptomyces glomeratus (98.9â% similarity). Multilocus sequence analyses based on five conserved housekeeping gene alleles confirmed the close relationship between the isolate and S. leeuwenhoekii C34T, although both strains belonged to a well-supported clade that encompassed the type strains of S. glomeratus, Streptomyces griseomycini, Streptomyces griseostramineus, Streptomyces labedae, Streptomyces lomondensis and Streptomyces spinoverrucosus. A comparison of the draft genome sequence generated for the isolate with corresponding whole genome sequences of its closest phylogenomic neighbours showed that it formed a well-separated lineage with S. leeuwenhoekii C34T. These strains can also be distinguished using a combination of phenotypic properties and by average nucleotide identity and digital DNA-DNA hybridization similarities of 94.3 and 56â%, values consistent with their classification in different species. Based on this wealth of data it is proposed that isolate PRKS01-65T (=NCIMB 15211T=CCMM B1302T=ICEBB-03T) be classified as Streptomyces harenosi sp. nov. The genome of the isolate contains several biosynthetic gene clusters with the potential to produce new natural products.
Assuntos
Filogenia , Areia/microbiologia , Microbiologia do Solo , Streptomyces/classificação , Genes Bacterianos , Indonésia , Família Multigênica , RNA Ribossômico 16S/genética , Streptomyces/isolamento & purificaçãoRESUMO
Five actinobacteria isolates, KC201T, KC401, KC310T, KC712T and 6K102T, were recovered from the Karakum Desert during an investigation of novel actinobacteria with biotechnological potential. A polyphasic approach confirmed the affiliation of the strains to the genus Nonomuraea. The strains showed chemotaxonomic and morphological properties consistent with their classification in the genus Nonomuraea. Furthermore, these strains clearly distinguished and formed well supperted clades in phylogenetic and phylogenomic trees. Low ANI and dDDH values and distinguishing phenotypic properties between isolates KC201T, KC310T, KC712T and 6K102T showed that these strains belonged to novel Nonomuraea species, the names proposed for these taxa are Nonomuraea deserti sp. nov., Nonomuraea diastatica sp. nov., Nonomuraea longispora sp. nov. and Nonomuraea mesophila sp. nov., with the type strains KC310T (=CGMCC 4.7331T =DSM 102919T =KCTC 39774T), KC712T (=CGMCC 4.7334T =DSM 102925T =KCTC 39776), KC201T (=CGMCC 4.7339T =DSM 102917T =KCTC 39781T) and 6K102T (=CGMCC 4.7541T =JCM 32916), respectively.
Assuntos
Actinobacteria/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Turcomenistão , Vitamina K 2/químicaRESUMO
Strain EAR18T was isolated as an endophyte from the roots of a halophyte plant, Arthrocnemum macrostachyum, growing in the Odiel marshes (Huelva, Spain). Cells of strain EAR18T were Gram- stain-negative, motile, non-spore-forming aerobic rods. It grew optimally on tryptic soy agar supplemented with 2.5â% NaCl (w/v), at pH 7 and 30 °C for 48 h. It tolerated NaCl from 0 to 25 % (w/v). It presented Q9 as the major quinone and C19â:â0 cyclo ω8c, summed feature 8 (C18â:â1ω7c and/or C18â:â1ω6c) and C16â:â0 as the predominant fatty acids. The polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and four unidentified phospholipids. The results of phylogenetic analysis based on 16S rRNA gene sequences revealed that strain EAR18T formed a well-supported clade with species Halomonas zincidurans B6T and Halomonas xinjiangensis TRM 0175T (similarities of 98.3 and 96.1â% respectively). Furthermore, digital DNA-DNA hybridization analysis resulted in values of 20.4â% with H. xinjiangensis TRM 0175T and 35.50â% with H. zincidurans B6T, and ANIb/ANIm results in values of 73.8 %/84.2â% with H. xinjiangensis TRM 0175T and 86.8 %/89.4â% with H. zincidurans B6T. Based on phylogeny and differential phenotypic properties in comparison with its closest related species, strain EAR18T is suggested to represent a new species in the genus Halomonas, for which the name Halomonas radicis sp. nov. is proposed. The type strain is EAR18T (=CECT 9077T=LMG 29859T). The whole genome was sequenced, and it had a total length of 4.6 Mbp and a G+C content of 64.9 mol%.
Assuntos
Chenopodiaceae/microbiologia , Halomonas/classificação , Filogenia , Raízes de Plantas/microbiologia , Áreas Alagadas , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Endófitos/classificação , Endófitos/isolamento & purificação , Ácidos Graxos/química , Halomonas/isolamento & purificação , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , EspanhaRESUMO
Strain RA15T was isolated from the rhizosphere of the halophyte plant Arthrocnemum macrostachyum growing in the Odiel marshes (Huelva, Spain). RA15T cells were Gram stain-negative, non-spore-forming, aerobic rods and formed cream-coloured, opaque, mucoid, viscous, convex, irregular colonies with an undulate margin. Optimal growth conditions were observed on tryptic soy agar (TSA) plates supplemented with 2.5â% NaCl (w/v) at pH 7.0 and 28 °C, although it was able to grow at 4-32 °C and at pH values of 5.0-9.0. The NaCl tolerance range was from 0 to 15â%. The major respiratory quinone was Q8 but Q9 was also present. The most abundant fatty acids were summed feature 3 (C16â:â1 ω7c and/or C16â:â1 ω6c), C17â:â1 ω8c and C16â:â0. The polar lipids profile comprised phosphatidylglycerol and phosphatidylethanolamine as the most abundant representatives. Phylogenetic analyses confirmed the well-supported affiliation of strain RA15T within the genus Pseudoalteromonas, close to the type strains of Pseudoalteromonas neustonica, Pseudoalteromonas prydzensis and Pseudoalteromonas mariniglutinosa. Results of comparative phylogenetic and phenotypic studies between strain RA15T and its closest related species suggest that RA15T could be a new representative of the genus Pseudoalteromonas, for which the name Pseudoalteromonas rhizosphaerae sp. nov. is proposed. The type strain is RA15T (=CECT 9079T=LMG 29860T). The whole genome has 5.3 Mb and the G+C content is 40.4âmol%.
Assuntos
Biodegradação Ambiental , Chenopodiaceae/microbiologia , Filogenia , Pseudoalteromonas/classificação , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Pseudoalteromonas/isolamento & purificação , RNA Ribossômico 16S/genética , Plantas Tolerantes a Sal/microbiologia , Análise de Sequência de DNA , Espanha , Ubiquinona/química , Áreas AlagadasRESUMO
A novel actinobacterial strain, designated S2509T, was isolated from marine sediment collected by a dredge at a depth of 45 m along Melet River offshore of the southern Black Sea coast, Ordu, Turkey. The cell wall peptidoglycan of strain was found to contain meso-diaminopimelic acid and 3-OH-diaminopimelic acid. The whole cell sugars detected were arabinose, glucose, rhamnose, ribose and xylose. The diagnostic phospholipids of strain S2509T were found to be diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, a glycolipid and two unidentified phospholipids. The predominant menaquinones were identified as MK-9(H8), MK-9(H6), MK-10(H8), MK-9(H4), MK-10(H4) and MK-10(H6). The major cellular fatty acids were found to be iso-C16:0, iso-C15:0 and 10-methyl C17:0. The taxonomic position of the strain was established using a polyphasic approach, showing that S2509T strain belongs to the genus Micromonospora. Phylogenetic analysis based on the 16S rRNA gene sequence of strain S2509T showed that it is closely related to the type strain of Micromonospora chokoriensis DSM 45160T (99.37% sequence similarity), and phylogenetically clustered with Micromonospora inaquosa LB39T (99.37%), Micromonospora lupini Lupac 14NT (99.16%), Micromonospora violae NEAU-zh8T (99.23%) and Micromonospora taraxaci NEAU-P5T (99.03%). The phylogenetic analysis based on the gyrB gene sequence of strain S2509T confirmed its close relationship with M. chokoriensis JCM 13247T (96.5% sequence similarity). Whole genome sequences confirmed by digital DNA-DNA hybridization analysis that the strain S2509T represents a novel species in the genus Micromonospora, for which the name Micromonospora orduensis sp. nov. is proposed. The type strain is S2509T (=DSM 45926T = KCTC 29201T).
Assuntos
Organismos Aquáticos , Sedimentos Geológicos/microbiologia , Micromonospora/classificação , Micromonospora/isolamento & purificação , Técnicas de Tipagem Bacteriana , Ácidos Graxos/metabolismo , Genoma Bacteriano , Genômica/métodos , Micromonospora/genética , Filogenia , Água do Mar/microbiologia , Microbiologia do SoloRESUMO
A novel actinobacterial strain, designated NA12T, was isolated from coastal sediment sample of Nemrut Lake, a crater lake in eastern Anatolia, Turkey. The taxonomic position of the strain was established using a polyphasic approach. Cultural and chemotaxonomic characteristics of the strain were consistent with its classification within the family Micromonosporaceae. The 16S rRNA gene sequence analysis of strain NA12T showed that the strain closely related to M. radicis AZ1-13T, M. zingiberis PLAI 1-1T, M. craniella LHW63014T and M. endophytica 202201T with pairwise sequence identity values ranging from 99.4 to 99.3%. Digital DNA-DNA hybridization values between strain NA12T and the closely related type strains were ranged from 41.0 to 18.3% while the average nucleotide identity values were between 87.3 and 86.5%, which are well below the designed cut-off points of 70 and 95%, respectively. The G + C content of genomic DNA was 71.5%. Whole-cell hydrolysates of strain NA12T contained 3-hydroxydiaminopimelic acid and meso-diaminopimelic acid. Cell-wall sugars were composed of arabinose, fucose, glucose, mannose, rhamnose and xylose. The polar lipid profile contained phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol, phosphatidylglycerol, glycophospholipid, amino-phospholipid and two unidentified phospholipids. The predominant menaquinones were MK-9(H6) and MK-9(H4). Major fatty acids were iso-C16:0 and C17:1ω8c. Based upon the consensus of phenotypic and phylogenetic analyses as well as whole genome comparisons, strain NA12T (DSM 100982T = KCTC 39647T) is proposed to represent the type strain of a novel species, Micromonospora craterilacus sp. nov.
Assuntos
Micromonospora , Actinobacteria/classificação , Parede Celular/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Lagos/microbiologia , Micromonospora/classificação , Micromonospora/genética , Micromonospora/isolamento & purificação , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , TurquiaRESUMO
A novel Gram-negative, aerobic, motile and rod-shaped bacterium with the potential to biodegrade polycyclic aromatic hydrocarbons, was isolated from Khazar (Caspian) Sea. Strain TBZ2T grows in the absence of NaCl and tolerates up to 8.5% NaCl. Growth occurred at pH 3.0-10.0 (optimum, pH 6.0-7.0) and 10-45 °C (optimum, 30 °C). The major fatty acids are C18:1ω7C, C16:1ω7C/ C15:0 iso 2-OH, C16:0, C12:0, C10:0 3-OH, C12:0 3-OH. The major polar lipids include diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine and the predominant respiratory quinone is ubiquinone Q-9. The 16S rRNA gene sequence analysis showed that strain TBZ2T is a member of the genus Pseudomonas with the highest similarity to P. oleovorans subsp. oleovorans DSM 1045T (98.83%), P. mendocina NBRC 14162T (98.63%), P. oleovorans subsp. lubricantis RS1T (98.61%) and P. alcaliphila JCM 10630T (98.49%) based on EzBioCloud server. Phylogenetic analyses using housekeeping genes (16S rRNA, rpoD, gyrB and rpoB) and genome sequences demonstrated that the strain TBZ2T formed a distinct branch closely related to the type strains of P. mendocina and P. guguanensis. Digital DNA-DNA hybridisation and average nucleotide identity values between strain TBZ2T and its closest relatives, P. mendocina NBRC 14162T (25.3%, 81.5%) and P. guguanensis JCM 18146T (26.8%, 79.0%), rate well below the designed threshold for assigning prokaryotic strains to the same species. On the basis of phenotypic, chemotaxonomic, genomic and phylogenetic results, it is recommended that strain TBZ2T is a novel species of the genus Pseudomonas, for which the name Pseudomonas khazarica sp. nov., is proposed. The type strain is TBZ2T (= LMG 29674T = KCTC 52410T).
Assuntos
Mar Cáspio , Sedimentos Geológicos/microbiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Adaptação Fisiológica , Genoma Bacteriano , Filogenia , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Especificidade da Espécie , Água/químicaRESUMO
The taxonomic position of strain 15-057AT, an acidophilic actinobacterium isolated from the bronchial lavage of an 80-year-old male, was determined using a polyphasic approach incorporating morphological, phenotypic, chemotaxonomic and genomic analyses. Pairwise 16S rRNA gene sequence similarities calculated using the GGDC web server between strain 15-057AT and its closest phylogenetic neighbours, Streptomyces griseoplanus NBRC 12779T and Streptacidiphilus oryzae TH49T, were 99.7 and 97.6â%, respectively. The G+C content of isolate 15-057AT was determined to be 72.6 mol%. DNA-DNA relatedness and average nucleotide identity between isolate 15-057AT and Streptomyces griseoplanus DSM 40009T were 29.2±2.5â% and 85.97â%, respectively. Chemotaxonomic features of isolate 15-057AT were consistent with its assignment within the genus Streptacidiphilus: the whole-cell hydrolysate contained ll-diaminopimelic acid as the diagnostic diamino acid and glucose, mannose and ribose as cell-wall sugars; the major menaquinone was MK9(H8); the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, glycophospholipid, aminoglycophospholipid and an unknown lipid; the major fatty acids were anteiso-C15â:â0 and iso-C16â:â0. Phenotypic and morphological traits distinguished isolate 15-057AT from its closest phylogenetic neighbours. The results of our taxonomic analyses showed that strain 15-057AT represents a novel species within the evolutionary radiation of the genus Streptacidiphilus, for which the name Streptacidiphilus bronchialis sp. nov. is proposed. The type strain is 15-057AT (=DSM 106435T=ATCC BAA-2934T).
Assuntos
Líquido da Lavagem Broncoalveolar/microbiologia , Filogenia , Streptomyces/classificação , Streptomycetaceae/classificação , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , Composição de Bases , Ciprofloxacina , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Farmacorresistência Bacteriana , Ácidos Graxos/química , Humanos , Masculino , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Streptomycetaceae/isolamento & purificação , TennesseeRESUMO
A polyphasic study was undertaken to establish the taxonomic provenance of a rapidly growing Mycolicibacterium strain, CECT 8783T, recovered from the plant Stellera chamaejasme L. in Yunnan Province, China. Phylogenetic analyses based upon 16S rRNA and whole-genome sequences showed that the strain formed a distinct branch within the evolutionary radiation of the genus Mycolicibacterium. The strain was most closely related to Mycolicibacterium moriokaense DSM 44221T with 98.4â% 16S rRNA gene sequence similarity, but was distinguished readily from this taxon by a combination of chemotaxonomic and phenotypic features and by low average nucleotide identity and digital DNA-DNA hybridization values of 79.5 and 21.1â%, respectively. Consequently, the strain is considered, to represent a novel species of Mycolicibacterium for which the name Mycolicibacterium stellerae sp. nov is proposed; the type strain is I10A-01893T (=CECT 8783T=KCTC 19843T=DSM 45590T).