RESUMO
OBJECTIVE: To study the influence of glazing on strength repair of lithium disilicate glass-ceramics after defect incorporation in different production processing phases. MATERIALS AND METHODS: Bar-shaped specimens (1 × 1 × 12 mm, n = 280; 20/group) made from different lithium disilicate ceramics (IPS e.max CAD, Ivoclar, "LD" or advanced lithium disilicate CEREC Tessera, Dentsply Sirona, "ALD") were exposed to 7 different protocols: crystallized without (c) and with glaze layer (cg), with a defect incorporated before crystallization without (ic) and with glaze layer (icg), with a defect after crystallization without (ci) or with glaze layer (cig), and defect incorporated after the glaze layer (cgi). The flexural strength was determined using the three-point bending test. Analysis of indented areas and fractured specimens was performed by scanning electron microscopy. Flexural strength data were evaluated by two-way ANOVA followed by Tukey tests (α = 5%). RESULTS: Two-way ANOVA revealed a significant influence of ceramic (p < 0.001; F = 55.45), protocol (p < 0.001; F = 56.94), and the interaction protocol*ceramic (p < 0.001; F = 13.86). Regardless of ceramics, defect incorporation as final step resulted in the worst strength, while defects introduced before crystallization did not reduce strength. Glaze firing after defect incorporation led to strength repair for ALD, whereas such an effect was not evident for LD. CONCLUSIONS: The advanced lithium disilicate must receive a glaze layer to achieve its highest strength. Defects incorporated in the pre-crystallized stage can be healed during crystallization. Defects should not be incorporated after glazing. CLINICAL RELEVANCE: Clinical adjustments should be performed on pre-crystallized or crystalized restorations that receive a glazer layer afterwards.
Assuntos
Cerâmica , Porcelana Dentária , Teste de Materiais , Propriedades de Superfície , Porcelana Dentária/química , Cerâmica/química , Resistência à Flexão , Desenho Assistido por Computador , LítioRESUMO
BACKGROUND/AIMS: Professional and amateur athletes might have veneer restorations. The aim of this study was to investigate the protective effect of mouthguards on veneered anterior restorations. METHODS: A nonlinear dynamic analysis was performed to simulate conditions during an impact with or without a custom-made mouthguard. Using a computer-aided design (CAD) software, a slice of a human maxilla was designed containing an upper right central incisor. The model was composed of mucosa, cortical bone, trabecular bone, periodontal ligament, dentin, enamel, and pulp tissue. The enamel was prepared (feather design), restored with an indirect veneer (1.0 mm thickness), and duplicated to simulate both conditions with or without a mouthguard (4 mm thickness). Both models were subdivided into finite elements using the computer-aided engineering (CAE) software. Frictionless contacts were used, and an impact was simulated in which a rigid sphere hit the model at 1 m s-1 . Fixation was defined at the base of the bone. The elastic modulus of the veneer was assessed by using five different restorative materials (resin composite, hybrid ceramic, zirconia-reinforced lithium silicate, lithium disilicate, and zirconia). Von Mises stress, minimal principal stress, and maximum principal stress (in MPa) were obtained and plotted for visual comparison. RESULTS: Von-Mises results showed higher stress concentrations in the veneer's cervical labial region for models without a mouthguard. Observing the quantitative results for each model, the highest compressive (709 MPa) and tensile (58 MPa) stresses occurred in the situation without a mouthguard with a zirconia veneer, while the lowest occurred in resin composite veneer with a mouthguard (8 and 5 MPa). The mouthguard was able to reduce the stresses in the tooth structure and it also reduced the risk of fracture in all conditions. CONCLUSIONS: Mouthguards were beneficial in reducing the effects of dental trauma regardless of the restorative material used to manufacture the indirect veneer, since they act by dampening the generated stresses during the trauma event. Equal impact stresses on a mouthguard will lead to higher stresses in veneered teeth with more rigid restorative materials leading to a less protective effect.
Assuntos
Materiais Dentários , Zircônio , Humanos , Análise de Elementos Finitos , Resinas Compostas , Análise do Estresse Dentário , Estresse Mecânico , Teste de MateriaisRESUMO
STATEMENT OF PROBLEM: Whether the replacement of a missing tooth with a fixed partial denture supported by an endodontically treated abutment could be improved with endocrowns is unclear. PURPOSE: The purpose of the study was to evaluate the mechanical behavior of a fixed partial denture (FPD) according to the preparation of the abutment teeth (endocrown or complete crown) in terms of stress magnitude in the prosthesis, cement layer, and tooth. MATERIAL AND METHODS: A posterior model with 2 abutment teeth (first molar and first premolar) was modeled with a computer-aided design (CAD) software program for conducting a 3-dimensional finite element analysis (FEA). To replace the missing second premolar, the model was replicated in different possible FPDs according to the abutment preparation design (complete crown [Conventional], 2 endocrowns [EC]) or an endocrown on one of the abutment teeth (first molar [ECM] and first premolar [ECP]) for a total of 4 designs. All FPDs were in lithium disilicate. The solids were imported to an analysis software program (ANSYS 19.2) in the standard for the exchange of product data (STEP) format. The mechanical properties were considered isotropic and the materials to show linear elastic and homogeneous behavior. An axial load (300 N) was applied at the occlusal surface of the pontic. The results were evaluated by colorimetric stress maps of von Mises and maximum principal stress in the prosthesis, maximum principal stress and shear stresses on the cement layer, and maximum principal stress in the abutment teeth. RESULTS: The von Mises stresses revealed that all FPD designs behaved similarly and that, considering the maximum principal stress criteria, the pontic was the most stressed region. For the cement layer, the combined designs presented an intermediate behavior, with the ECM more suitable to reducing the stress peak. The conventional preparation allowed less stress concentration in both teeth, and higher stress concentration in the premolar was observed with an endocrown. The endocrown decreased the risk of fracture failure. Considering the risk of debonding failure for the prosthesis, the endocrown preparation was only able to decrease the failure risk when the EC design was used and when only the shear stress was considered. CONCLUSIONS: Performing endocrown preparations to retain a 3-unit lithium disilicate FPD is an alternative to conventional complete crown preparations.
RESUMO
PURPOSE: To evaluate the effect of light-curing exposure time and location on polymerization of a restorative bulk-fill resin composite to lute endocrowns. METHODS: A light-cured restorative bulk-fill resin composite (Filtek One Bulk Fill) was submitted to direct light-curing by a high-power LED light-curing unit for 20 seconds as the positive control group (n= 10). Five more groups (n= 10) were light-cured in a natural tooth mold from two sites (labial and lingual) through a nanohybrid resin composite CAD-CAM restoration (Lava Ultimate A2 LT), for different irradiation times: 90 seconds per site, 40 seconds per site, 30 seconds per site, 20 seconds per site and 10 seconds per site. Vickers microhardness measurements were made at two different depths and test/control ratios were calculated. Ratios of 0.8 were considered as an adequate level of curing. A quantile regression was run to identify the minimally sufficient time of light-curing, and a two-way ANOVA was used to compare the results to previous findings and evaluate the effect of curing location. RESULTS: Analysis showed that 40 seconds x 2 is the minimal irradiation time that presents a test/control ratio above 0.8. Quantile regressions showed that the required irradiation time to reach a test/control ratio of 0.8 at a confidence level of 95% is 41.5 seconds and 39.2 seconds at 200 µm and 500 µm depths in the luting agent, respectively. There was no statistically significant difference between microhardness of the two depths except for the irradiation time of 10 seconds. The two-site to three-site light curing comparison showed no statistically significant difference except for the 90-second time. CLINICAL SIGNIFICANCE: Systematic light-curing through the labial, lingual and occlusal surfaces of thick indirect restorations is not always required for sufficient polymerization and can even waste valuable clinical time especially in the case of multiple restorations luted with resin composites.
Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas , Desenho Assistido por Computador , Cimentos Dentários , Materiais Dentários , Cimentos de Ionômeros de Vidro , Dureza , Cura Luminosa de Adesivos Dentários/métodos , Teste de Materiais , Polimerização , Propriedades de SuperfícieRESUMO
STATEMENT OF PROBLEM: Composite resins and glass-ceramics are both used to restore worn teeth. Which restoration material is more durable is unclear. PURPOSE: The purpose of this in vitro study was to evaluate the load to failure of thin composite resins and glass-ceramic restorations on enamel and dentin under increasing repetitive loads. MATERIAL AND METHODS: Glass-ceramic blocks (IPS e.max CAD; Ivoclar AG) were shaped into cylinders (Ø4.0×1.0 mm), crystallized, and adhesively luted to bovine dentin and enamel substrates that were embedded in polymethyl methacrylate (n=20). Identical direct composite resin restorations (Clearfil AP-X; Kuraray Noritake Dental Inc) were made and directly applied on the same substrates (n=20). All specimens were tested in a pneumatic device with a stainless steel ball that provided a stepwise increase of the load (N) starting at 250 N and increasing by 50 N after every 10 000 cycles to a maximum of 1150 N. Failures were detected by a displacement sensor and defined by chipping of restorative material or catastrophic failure. RESULTS: On dentin, composite resin showed a significantly higher fatigue resistance than glass-ceramic. On enamel, no significant difference was found between the 2 materials. CONCLUSIONS: When bonded to dentin, thin direct composite resin restorations were more durable than glass-ceramics. When bonded to enamel, no difference was found.
Assuntos
Resinas Compostas , Porcelana Dentária , Animais , Bovinos , Cerâmica/uso terapêutico , Resinas Compostas/uso terapêutico , Esmalte Dentário , Materiais Dentários , Falha de Restauração Dentária , Análise do Estresse Dentário , Dentina , Teste de MateriaisRESUMO
STATEMENT OF PROBLEM: Studies on the microhardness of novel additively manufactured polymers compared with well-established low- and high-viscosity composite resins with regard to chemical composition are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effect of hydrothermal aging on the microhardness of various conventional and additively manufactured polymers. MATERIAL AND METHODS: Cylindrically shaped specimens (N=240, n=10 per group) (Ø10×2 mm) were either additively manufactured (6 groups) or conventionally (6 groups) manufactured by using 3D (Optiprint Temp [OP; Dentona]; C&B MFH [ND; NextDent]; Saremco print CROWNTEC [SA; Saremco Dental AG]; Temp Print [TP; GC]; 3DELTA ETEMP [DM; Deltamed]; MED690 [ST; Stratasys, Ltd]) or conventional low (Gradia Direct [GR; GC]; Clearfil Majesty [CM; Kuraray Noritake]; Tetric EvoCeram [TE; Ivoclar AG]) and high (Gradia Direct Flo [GR-F; GC]; Clearfil Majesty Flow [CM-F; Kuraray Noritake]; Tetric EvoFlow [TE-F; Ivoclar AG]) viscous materials. All specimens were randomly allotted to 2 different aging methods (no-aging [dry] or aging by thermocycling [TC], ×6000, 5 °C-55 °C) and Vickers hardness (VH) tested (ZHV30; Zwick). Three indentations were made on each specimen (0.98-N load, duration 15 seconds). The calculated average microhardness value of each specimen was statistically analyzed by using 2-way ANOVA and Tukey post hoc tests (α=.05). Two-parameter Weibull distribution was calculated to predict the reliability of material type and aging method on VH. RESULTS: The mean ±standard deviation VH ranged between 17 ±0.5 VHN and 68 ±0.5 VHN in the following ascending order: group STa
Assuntos
Resinas Compostas , Polímeros , Polímeros/química , Viscosidade , Reprodutibilidade dos Testes , Teste de Materiais , Resinas Compostas/química , Dureza , Propriedades de SuperfícieRESUMO
STATEMENT OF PROBLEM: When implants are applied to restore oral function, the masticatory load on the crown will lead to stress development in all parts of the crown-abutment-implant-bone system. An optimal design of the whole system will be important for sustained function. PURPOSE: The purpose of this 3-dimensional (3D) finite element analysis (FEA) study was to evaluate the influence of the root-analog implant (RAI) design in molar rehabilitation and bone type. MATERIAL AND METHODS: Twelve 3D models of single posterior implant-supported restorations were created according to the zirconia implant design (monotype, 2-piece, or RAI) and bone type (D1, D2, D3, and D4, according to the Misch classification). The models were composed of cortical bone, cancellous bone, implant, cement layers, and a monolithic ceramic crown. For the 2-piece zirconia implant model, the titanium base, prosthetic screw, and framework were also designed. All materials were assumed to behave elastically throughout the entire analysis. The bone was fixed, and an axial loading of 600 N was applied to the contacts on the occlusal surface of the crowns. Results for the crown and implant were obtained in maximum principal stress, as well as the von Mises stress for the model and bone microstrain. RESULTS: High stress concentration was observed at the intaglio surface of the crowns near the loading region. Regardless of the design, the stress trend in the implant was similar, increasing proportionally to the bone type (D1>D2>D3>D4). RAI showed a homogeneous stress field near the values calculated for the conventional designs, but with lower magnitudes. The 2-piece zirconia model showed the highest stress magnitude regardless of the bone type and, therefore, the highest failure risk. All models showed a higher strain in the cortical bone than in the cancellous bone, located predominantly in the cervical region. A strain analysis showed that both conventional implant models presented similar behavior for D1 and D2 bone types, with an increasing difference for D3 and D4. RAI showed the lowest strain regardless of the bone type. CONCLUSIONS: Root-analog zirconia implants present a promising biomechanical behavior for dissipating the masticatory load in comparison with conventional screw-shaped implants.
RESUMO
BACKGROUND: Little is known about the effect of the type of splint material, heat-cured PMMA (HC) or chemical-cured PMMA (CC) on the wear of opposing tooth surfaces. OBJECTIVE: The aim of this in vitro study was to evaluate two-body wear of dentin, enamel, glass-ceramic or one of four resin composites when opposing splint materials, namely ProBase HC and CC. METHODS: The two-body wear of bovine dentine, bovine enamel, glass-ceramic IPS e.max CAD (EMAX) and four composites (Filtek Z250 [Z250], Clearfil AP-X [AP-X], Clearfil Majesty Posterior [CMP], Filtek Supreme XTE [FSE]) opposing three antagonists (HC and CC and stainless steel as control) were evaluated in the ACTA wear machine. In addition, all the surfaces were evaluated with scanning electron microscopy. RESULTS: The highest average wear was observed in the case of dentin. The lowest average wear was found EMAX. In every case-except for EMAX-the wear rate was higher with HC than with CC (all differences being statistically significant). CONCLUSIONS: The level of wear of enamel, dentin and various resin composites was higher in contact with HC than in CC, the wear of dentin being the highest. In the case of a patient with no or little tooth wear or whose teeth are restored with composite material or glass-ceramic, the splint HC might be preferred because of its better durability. However, when the splint is in contact with opposing dentin preservation of the dentin, CC might be the best choice.
Assuntos
Desgaste de Restauração Dentária , Desgaste dos Dentes , Animais , Bovinos , Resinas Compostas , Esmalte Dentário , Humanos , Teste de Materiais , Placas Oclusais , Propriedades de Superfície , Desgaste dos Dentes/terapiaRESUMO
BACKGROUND: Skin patch testing is still seen as the gold standard for the diagnosis of allergic hypersensitivity. For several metals and for patients with a suspected adverse reaction to their medical device implant material, patch testing can be unreliable. The current alternative to metal allergy patch testing is the in vitro lymphocyte proliferation test (LPT) using tritiated thymidine. This method is well-established but requires handling of radioactive material, often uses heat-inactivated allogenic human pooled serum and cannot determine T cell subsets. OBJECTIVE: To develop a radioactive free LPT by using carboxyfluorescein succinimidyl ester (CFSE) and to evaluate the influence of serum source (heat-inactivated human pooled serum [HI HPS] vs autologous serum) on the sensitivity and specificity of the nickel-specific LPT. METHODS: Peripheral blood mononuclear cells derived from nickel-allergic patients and healthy controls were collected, labelled with CFSE and cultured in medium containing 10% HI HPS or 10% autologous serum with or without additional T cell skewing cytokine cocktails (Th1: IL-7/IL-12, Th2: IL-7/IL-4 or Th17: IL-7/IL-23/IL-1ß) in the absence or presence of NiSO4 . The stimulation index (SI) was calculated as the ratio of divided cells, that is the percentage of CFSElow/neg CD3+ CD4+ T-lymphocytes upon nickel stimulation compared to the percentage of CFSElow/neg CD3+ CD4+ T-lymphocytes without antigen. These results were compared with the history of Ni allergy, patch test results and the MELISA test. RESULTS: Autologous serum positively influenced Ni-specific proliferation while HI HPS negatively influenced Ni-specific proliferation. The test protocol analysing CD4+ cells and autologous serum without skewing cytokines scored the best diagnostic values (sensitivity 95%; specificity 93%; and overall accuracy 94%) compared to the parallel test using HI HPS (accuracy 60%). Cytokine supplements did not further improve the test protocol which used autologous serum. The protocol using HI HPS could be further improved by addition of the cytokine skewing cocktails. CONCLUSIONS: Here, we describe an optimized and highly accurate flow cytometric LPT which comprises of CFSE-labelled cells cultured in autologous serum (not heat inactivated) and without the presence of T cell skewing cytokines. CLINICAL RELEVANCE: The sensitivity and specificity of LPT is enhanced, compared to HI HPS, when autologous serum without skewing cytokines is used.
Assuntos
Proliferação de Células , Hipersensibilidade , Ativação Linfocitária , Linfócitos , Níquel/toxicidade , Soro , Adulto , Idoso , Citocinas/imunologia , Feminino , Fluoresceínas/química , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Hipersensibilidade/patologia , Linfócitos/imunologia , Linfócitos/patologia , Masculino , Pessoa de Meia-IdadeRESUMO
PURPOSE: To evaluate the minimal irradiation time to reach a sufficient polymerization of a photopolymerizable restorative bulk-fill resin composite to lute endocrowns. METHODS: A photopolymerizable restorative bulk-fill resin composite (Filtek One Bulk Fill) was submitted to direct light-curing by a high power LED light-curing unit for 20 seconds as the positive control group (n = 10). Five more test groups (n= 10) were light-cured in a natural tooth mold from three sites (buccal, palatal and occlusal) under a 9.5 mm thick nanohybrid resin composite CAD-CAM endocrown (Lava Ultimate A2 LT), for different irradiation times: 90 seconds per site, 40 seconds per site, 30 seconds per site, 20 seconds per site and 10 seconds per site. Vickers microhardness measurements were made at two different depths and test/control ratios were calculated. Ratios of 0.8 were considered as an adequate level of curing. RESULTS: Analysis shows that 30 seconds x 3 was the minimal irradiation time that presented a test/control ratio above 0.8. Quantile regressions showed that the required irradiation time to reach a test/control ratio of 0.8 at a confidence level of 95% was 38 seconds and 37 seconds for 200 µm and 500 µm, respectively. There was no statistically significant difference between microhardness of the two depths except for the irradiation time of 10 seconds. A 120-second (40 seconds per buccal, palatal and occlusal site) light-curing of photopolymerizable bulk-fill resin composite to lute a resin composite CAD-CAM endocrown restoration can be considered sufficient to reach adequate polymerization.
Assuntos
Lâmpadas de Polimerização Dentária , Cura Luminosa de Adesivos Dentários , Resinas Compostas , Desenho Assistido por Computador , Dureza , Teste de Materiais , PolimerizaçãoRESUMO
Osteoblasts derived from mouse skulls have increased osteoclastogenic potential compared to long bone osteoblasts when stimulated with 1,25(OH)2 vitamin D3 (vitD3). This indicates that bone cells from specific sites can react differently to biochemical signals, e.g., during inflammation or as emitted by bioactive bone tissue-engineering constructs. Given the high turn-over of alveolar bone, we hypothesized that human alveolar bone-derived osteoblasts have an increased osteogenic and osteoclastogenic potential compared to the osteoblasts derived from long bone. The osteogenic and osteoclastogenic capacity of alveolar bone cells and long bone cells were assessed in the presence and absence of osteotropic agent vitD3. Both cell types were studied in osteogenesis experiments, using an osteogenic medium, and in osteoclastogenesis experiments by co-culturing osteoblasts with peripheral blood mononuclear cells (PBMCs). Both osteogenic and osteoclastic markers were measured. At day 0, long bones seem to have a more late-osteoblastic/preosteocyte-like phenotype compared to the alveolar bone cells as shown by slower proliferation, the higher expression of the matrix molecule Osteopontin (OPN) and the osteocyte-enriched cytoskeletal component Actin alpha 1 (ACTA1). This phenotype was maintained during the osteogenesis assays, where long bone-derived cells still expressed more OPN and ACTA1. Under co-culture conditions with PBMCs, long bone cells also had a higher Tumor necrose factor-alfa (TNF-α) expression and induced the formation of osteoclasts more than alveolar bone cells. Correspondingly, the expression of osteoclast genes dendritic cell specific transmembrane protein (DC-STAMP) and Receptor activator of nuclear factor kappa-Β ligand (RankL) was higher in long bone co-cultures. Together, our results indicate that long bone-derived osteoblasts are more active in bone-remodeling processes, especially in osteoclastogenesis, than alveolar bone-derived cells. This indicates that tissue-engineering solutions need to be specifically designed for the site of application, such as defects in long bones vs. the regeneration of alveolar bone after severe periodontitis.
Assuntos
Processo Alveolar/citologia , Osteogênese , Tíbia/citologia , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Humanos , Osteoblastos/citologia , Osteoclastos/citologiaRESUMO
Incorporation of 1,25(OH)2 vitamin D3 (vitD3) into tissue-engineered scaffolds could aid the healing of critical-sized bone defects. We hypothesize that shorter applications of vitD3 lead to more osteogenic differentiation of mesenchymal stem cells (MSCs) than a sustained application. To test this, release from a scaffold was mimicked by exposing MSCs to exactly controlled vitD3 regimens. Human adipose stem cells (hASCs) were seeded onto calcium phosphate particles, cultured for 20 days, and treated with 124 ng vitD3, either provided during 30 min before seeding ([200 nM]), during the first two days ([100 nM]), or during 20 days ([10 nM]). Alternatively, hASCs were treated for two days with 6.2 ng vitD3 ([10 nM]). hASCs attached to the calcium phosphate particles and were viable (~75%). Cell number was not affected by the various vitD3 applications. VitD3 (124 ng) applied over 20 days increased cellular alkaline phosphatase activity at Days 7 and 20, reduced expression of the early osteogenic marker RUNX2 at Day 20, and strongly upregulated expression of the vitD3 inactivating enzyme CYP24. VitD3 (124 ng) also reduced RUNX2 and increased CYP24 applied at [100 nM] for two days, but not at [200 nM] for 30 min. These results show that 20-day application of vitD3 has more effect on hASCs than the same total amount applied in a shorter time span.
Assuntos
Tecido Adiposo/citologia , Colecalciferol/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Osteogênese/efeitos dos fármacosRESUMO
Fracture repair is characterized by cytokine production and hypoxia. To better predict cytokine modulation of mesenchymal stem cell (MSC)-aided bone healing, we investigated whether interleukin 4 (IL-4), IL-6, and their combination, affect osteogenic differentiation, vascular endothelial growth factor (VEGF) production, and/or mammalian target of rapamycin complex 1 (mTORC1) activation by MSCs under normoxia or hypoxia. Human adipose stem cells (hASCs) were cultured with IL-4, IL-6, or their combination for 3 days under normoxia (20% O 2 ) or hypoxia (1% O 2 ), followed by 11 days without cytokines under normoxia or hypoxia. Hypoxia did not alter IL-4 or IL-6-modulated gene or protein expression by hASCs. IL-4 alone decreased runt-related transcription factor 2 (RUNX2) and collagen type 1 (COL1) gene expression, alkaline phosphatase (ALP) activity, and VEGF protein production by hASCs under normoxia and hypoxia, and decreased mineralization of hASCs under hypoxia. In contrast, IL-6 increased mineralization of hASCs under normoxia, and enhanced RUNX2 gene expression under normoxia and hypoxia. Neither IL-4 nor IL-6 affected phosphorylation of the mTORC1 effector protein P70S6K. IL-4 combined with IL-6 diminished the inhibitory effect of IL-4 on ALP activity, bone nodule formation, and VEGF production, and decreased RUNX2 and COL1 expression, similar to IL-4 alone, under normoxia and hypoxia. In conclusion, IL-4 alone, but not in combination with IL-6, inhibits osteogenic differentiation and angiogenic stimulation potential of hASCs under normoxia and hypoxia, likely through pathways other than mTORC1. These results indicate that cytokines may differentially affect bone healing and regeneration when applied in isolation or in combination.
Assuntos
Tecido Adiposo/citologia , Diferenciação Celular/efeitos dos fármacos , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos , Células-Tronco/fisiologia , Adulto , Desenvolvimento Ósseo/efeitos dos fármacos , Diferenciação Celular/fisiologia , Proliferação de Células , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Osteogênese/fisiologia , Oxigênio , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismoRESUMO
BACKGROUND AND OBJECTIVE: Metal-based dental restorations with a subgingival outline may enhance plaque accumulation and bacterial colonization. This study aimed to investigate whether metal-based restorations influence the composition of subgingival microbiome. MATERIAL AND METHODS: Per subject one site with a metal-based restoration and one contra-lateral site without a restoration were selected on basis of radiographic bone loss ≤2 mm, restoration outline at sulcus level/subgingivally, pocket depth ≤4 mm, and no root canal treatments. Subgingival samples were collected with sterile paper-points, and microbial profiles were obtained by 16S rRNA gene amplicon sequencing. Restorations were sampled with an Arkansas-stone and the metal composition was determined using energy-dispersive X-ray spectroscopy. RESULTS: A total of 22 sites from 11 subjects were included. No significant differences for the clinical parameters were found between the restored and unrestored sites. The average age of the restorations was 14.9 ± 7.1 years. Firmicutes was the most prevalent phylum at the restored sites (32% vs 20% of the reads of the unrestored sites, P = 0.016), and Actinobacteria at the unrestored sites (33% vs 18% of the reads of the restored sites, P = 0.01). Overall, sequences clustered into 573 operational taxonomic units (OTUs). Species richness of the restored sites was significantly higher than species richness of the unrestored sites (117 ± 32 and 96 ± 20 OTUs, respectively, P = 0.013). No associations between the metal composition and bacterial profiles were found. CONCLUSION: This study shows that metal-based restorations may enhance colonization of Firmicutes and the neighboring pocket may harbor more diverse microbial communities.
Assuntos
Actinobacteria/classificação , Materiais Dentários/química , Firmicutes/classificação , Gengiva/microbiologia , Metais/química , Microbiota , Adulto , Estudos Transversais , Placa Dentária/microbiologia , Restauração Dentária Permanente , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genéticaRESUMO
Little is known about the wear rate of enamel and dentin opposing resin composite following restoration of the occlusal surface in patients with tooth wear. Hence, the aim of this in vitro study was to evaluate the wear of enamel and dentin surfaces when opposing each of three resin composites in a two-body and three-body wear test. The two-body and three-body wear of dentin, enamel, and three resin composites (Clearfil AP-X, Filtek Z250, and Filtek Supreme) opposing four antagonists (stainless steel and three resin composites) were evaluated using the ACTA wear machine. In addition, all the surfaces were evaluated with scanning electron microscopy. The results showed the lowest wear rate in enamel and the highest in dentine, with the composite showing intermediate wear rates. The three-body wear results were not affected by the antagonist and showed pure wear caused by the abrasive food medium. The in vitro enamel/composite wear ratio was 2.5. The results show that tooth wear accelerates as soon as enamel disappears and dentin is exposed to composite resin. Therefore, it is important to protect dentin with a restorative material.
Assuntos
Resinas Compostas/química , Materiais Dentários/química , Desgaste de Restauração Dentária/estatística & dados numéricos , Teste de Materiais/métodos , Dureza , Humanos , Técnicas In Vitro , Metacrilatos/química , Propriedades de SuperfícieRESUMO
STATEMENT OF PROBLEM: Hydrofluoric acid etching modifies the cementation surface of ceramic restorations, which is the same surface where failure is initiated. Information regarding the influence of hydrofluoric acid etching on the cyclic loads to failure of ceramic crowns is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the influence of different hydrofluoric acid concentrations on the fatigue failure loads of feldspathic ceramic crowns. MATERIAL AND METHODS: Eighty feldspathic ceramic crowns were cemented with resin cement to identical simplified complete crown preparations machined in a dentin-like polymer. The preparations were etched with 10% hydrofluoric acid for 60 seconds and received a primer coating. Before cementation, the intaglio of the ceramic crowns was treated with 1 of 4 surface conditionings (n=20): nonconditioned (control, CTRL), or etched for 60 seconds with different hydrofluoric acid concentrations: 1% (HF1), 5% (HF5), and 10% (HF10). A silane coupling agent was applied on this surface of all crowns, which were cemented to the preparations. Each crown was cyclically loaded in water with a G10 epoxy-glass piston positioned in the center of the occlusal surface. Fatigue failure loads of ceramic crowns were obtained by the staircase approach after 500000 cycles at 20 Hz. Mean failure loads were analyzed by 1-way ANOVA and the Tukey test (α=.05). RESULTS: Mean failure loads of groups CTRL (245.0 ±15.1 N), HF1 (242.5 ±24.7 N), and HF10 (255.7 ±53.8 N) were statistically similar (P>.05), while that of the HF5 group (216.7 ±22.5 N) was significantly lower (P<.05). CONCLUSIONS: HF5 acid had a negative effect on the fatigue loads of the tested feldspathic ceramic crowns, while HF1 and HF10 acids did not change the fatigue resistance.
Assuntos
Condicionamento Ácido do Dente/métodos , Cerâmica , Coroas , Falha de Restauração Dentária , Ácido Fluorídrico/uso terapêutico , Condicionamento Ácido do Dente/efeitos adversos , Cerâmica/efeitos adversos , Coroas/efeitos adversos , Análise do Estresse Dentário , Humanos , Ácido Fluorídrico/administração & dosagem , Ácido Fluorídrico/efeitos adversos , Técnicas In Vitro , Suporte de CargaRESUMO
STATEMENT OF PROBLEM: Oral metal exposure has been associated with systemic and local adverse reactions, probably due to elemental release from the alloys. Although supraphysiological concentrations of salts from dentally applied metals can activate innate cells through TLR4 (Ni, Co, Pd) and TLR3 (Au), whether direct exposure to solid alloys can also trigger innate immune reactivity is still unknown. PURPOSE: The purpose of this in vitro study was to determine whether dental cast alloy specimens can activate innate cells and influence their responsiveness to bacterial endotoxin. MATERIAL AND METHODS: Human monocyte-derived dendritic cells (MoDC) and THP-1 cells were cultured on top of different alloy specimens (Ni-Cr, Co-Cr, Pd-Cu, Pd-Ag, Ti-6Al-4V, amalgam, gold, and stainless steel) or in alloy-exposed culture medium with or without endotoxin (lipopolysaccharide [LPS]; Escherichia coli 055:B5). Interleukin-8 (IL-8) production was used as the parameter for innate stimulation and evaluated by enzyme-linked immunosorbent assay after 24 hours of culture. The statistical significance of the effects of various casting alloys on the secretion of IL-8 was analyzed by using the nonparametric Wilcoxon rank sum test (α=.05). RESULTS: Dental cast alloys induced IL-8 production in MoDC and THP-1 cells, with Au and Pd-Cu providing the strongest stimulation. The alloy-exposed culture media tested contained sufficient stimulatory metal ions to induce detectable IL-8 production in THP-1 cells, except for the Ni-Cr and stainless steel exposed media. Au and Pd-Cu alloys were also most effective in potentiating LPS responsiveness as measured by IL-8 production. CONCLUSIONS: Using an in vitro culture system to expose MoDC and THP-1 cells to different alloy specimens this study showed that contact with the solid alloys, in particular when they contain Pd or Au, can trigger innate immune responses and augment responsiveness to bacterial endotoxin.
Assuntos
Células Dendríticas/imunologia , Ligas Dentárias , Técnica de Fundição Odontológica , Endotoxinas/imunologia , Imunidade Inata , Cobalto/imunologia , Ensaio de Imunoadsorção Enzimática , Ouro/imunologia , Humanos , Técnicas In Vitro , Interleucina-8/imunologia , Teste de Materiais , Níquel/imunologia , Paládio/imunologia , Estatísticas não ParamétricasRESUMO
PURPOSE: To evaluate the effect of a silicone disclosing procedure performed at different timepoints on the shear bond strength (SBS) of cements (self-adhesive composite cement, self-etch composite cement, resin-reinforced glass-ionomer cement) to different substrates (zirconia, lithium disilicate, bovine dentin). MATERIALS AND METHODS: The substrate/cement combinations were assigned to two groups (n = 15) according to the timepoint, at which the vinyl polyether silicone disclosing agent was applied: after (experimental groups, EXP) or before (control groups, CTRL) specific micromechanical treatments of the substrate surface. To increase standardization, the cements were applied into rubber rings (2.2 mm diameter x 1.0 mm thickness) positioned on the substrate surface. After luting procedures, all specimens were stored in 37°C distilled water for 24 h, then subjected to SBS testing using a wire loop of 0.2 mm diameter at a crosshead speed of 1 mm/min until failure. Failure analysis was performed for all tested specimens. SBS data were submitted to Weibull analysis. RESULTS: The silicone disclosing procedure performed after micromechanical surface treatment reduced the characteristic shear bond strength to zirconia and lithium disilicate when compared to CTRL. However, for dentin specimens, there was no significant difference between CTRL and EXP for any of the cements investigated. Failure analysis showed a predominance of interfacial failures. CONCLUSION: The silicone disclosing procedure performed after the micromechanical treatment of ceramic surfaces negatively affected the cement bond strength. Therefore, after using it to check the fit of a prosthesis, clinicians should carefully clean the ceramic surface.
Assuntos
Colagem Dentária , Cimentos Dentários , Resistência ao Cisalhamento , Silicones , Dentina , Teste de MateriaisRESUMO
The cytotoxicity of a dental alloy depends on, but is not limited to, the extent of its corrosion behavior. Individual ions may have effects on cell viability that are different from metals interacting within the alloy structure. We aimed to investigate the cytotoxicity of individual metal ions in concentrations similar to those reported to be released from Pd-based dental alloys on mouse fibroblast cells. Metal salts were used to prepare seven solutions (concentration range 100 ppm-1 ppb) of the transition metals, such as Ni(II), Pd(II), Cu(II), and Ag(I), and the metals, such as Ga(III), In(III), and Sn(II). Cytotoxicity on mouse fibroblasts L929 was evaluated using the MTT assay. Ni, Cu, and Ag are cytotoxic at 10 ppm, Pd and Ga at 100 ppm. Sn and In were not able to induce cytotoxicity at the tested concentrations. Transition metals were able to induce cytotoxic effects in concentrations similar to those reported to be released from Pd-based dental alloys. Ni, Cu, and Ag were the most cytotoxic followed by Pd and Ga; Sn and In were not cytotoxic. Cytotoxic reactions might be considered in the etiopathogenesis of clinically observed local adverse reactions.
Assuntos
Ligas Dentárias/toxicidade , Teste de Materiais , Metais/toxicidade , Paládio/química , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Íons , Camundongos , Testes de ToxicidadeRESUMO
STATEMENT OF PROBLEM: With the increasing use of minimally invasive restorations, effective adhesion becomes more important. Applying mechanical retention to a flat dentin surface might improve the adhesion of ceramic and composite resin restorations. PURPOSE: The purpose of this in vitro study was to evaluate the effect of a groove in a flat dentin surface on the bond strength of various restorative materials. MATERIAL AND METHODS: Dentin specimens of bovine teeth were prepared with or without a groove. Identical disks were fabricated from direct composite resins (Filtek Supreme XTE [FS] and Clearfil AP-X [AP]) and indirect ceramics (Vita Mark II [VM] and IPS E.max CAD [EM]). These materials were bonded directly or cemented adhesively to the dentin specimens. Shear bond strength was tested with a universal testing machine. Finite element analysis (FEA) models of the test arrangement were made to further analyze the stress distribution. RESULTS: VM (no groove, 5.1 ±3.0 MPa; groove, 8.7 ±1.5 MPa) and EM (no groove, 11.4 ±3.7 MPa; groove, 17.7 ±5.2 MPa) showed significant effect of a groove on the shear bond strength. FS (no groove, 18.6 ±4.9 MPa; groove, 16.3 ±4.3 MPa) and AP (no groove, 25.8 ±3.8 MPa; groove, 24.2 ±7.2 MPa) showed no significant effect of a groove. For the composite resins, the retention groove increased the shear stress along the dentin-restoration interface, and debonding at the contact surface started at lower load values than for the specimens without a groove. CONCLUSIONS: Application of a groove to a flat dentin surface improved the shear bond strength for ceramic restorations. For direct composite resin restorations, exhibiting a lower elastic modulus, a groove had no significant effect on the shear bond strength, while it increased the shear stress along the dentin-restoration interface for composite resin.