Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Med Genet A ; 194(9): e63641, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38725242

RESUMO

Next-generation phenotyping (NGP) can be used to compute the similarity of dysmorphic patients to known syndromic diseases. So far, the technology has been evaluated in variant prioritization and classification, providing evidence for pathogenicity if the phenotype matched with other patients with a confirmed molecular diagnosis. In a Nigerian cohort of individuals with facial dysmorphism, we used the NGP tool GestaltMatcher to screen portraits prior to genetic testing and subjected individuals with high similarity scores to exome sequencing (ES). Here, we report on two individuals with global developmental delay, pulmonary artery stenosis, and genital and limb malformations for whom GestaltMatcher yielded Cornelia de Lange syndrome (CdLS) as the top hit. ES revealed a known pathogenic nonsense variant, NM_133433.4: c.598C>T; p.(Gln200*), as well as a novel frameshift variant c.7948dup; p.(Ile2650Asnfs*11) in NIPBL. Our results suggest that NGP can be used as a screening tool and thresholds could be defined for achieving high diagnostic yields in ES. Training the artificial intelligence (AI) with additional cases of the same ethnicity might further increase the positive predictive value of GestaltMatcher.


Assuntos
Síndrome de Cornélia de Lange , Fenótipo , Humanos , Síndrome de Cornélia de Lange/genética , Síndrome de Cornélia de Lange/diagnóstico , Síndrome de Cornélia de Lange/patologia , Masculino , Feminino , Criança , Nigéria , Pré-Escolar , Proteínas de Ciclo Celular/genética , Sequenciamento do Exoma , Testes Genéticos/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Lactente
2.
BMC Med Genomics ; 17(1): 132, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38755654

RESUMO

BACKGROUND: Polygenic risk scores (PRS) quantify an individual's genetic predisposition for different traits and are expected to play an increasingly important role in personalized medicine. A crucial challenge in clinical practice is the generalizability and transferability of PRS models to populations with different ancestries. When assessing the generalizability of PRS models for continuous traits, the R 2 is a commonly used measure to evaluate prediction accuracy. While the R 2 is a well-defined goodness-of-fit measure for statistical linear models, there exist different definitions for its application on test data, which complicates interpretation and comparison of results. METHODS: Based on large-scale genotype data from the UK Biobank, we compare three definitions of the R 2 on test data for evaluating the generalizability of PRS models to different populations. Polygenic models for several phenotypes, including height, BMI and lipoprotein A, are derived based on training data with European ancestry using state-of-the-art regression methods and are evaluated on various test populations with different ancestries. RESULTS: Our analysis shows that the choice of the R 2  definition can lead to considerably different results on test data, making the comparison of R 2  values from the literature problematic. While the definition as the squared correlation between predicted and observed phenotypes solely addresses the discriminative performance and always yields values between 0 and 1, definitions of the R 2 based on the mean squared prediction error (MSPE) with reference to intercept-only models assess both discrimination and calibration. These MSPE-based definitions can yield negative values indicating miscalibrated predictions for out-of-target populations. We argue that the choice of the most appropriate definition depends on the aim of PRS analysis - whether it primarily serves for risk stratification or also for individual phenotype prediction. Moreover, both correlation-based and MSPE-based definitions of R 2 can provide valuable complementary information. CONCLUSIONS: Awareness of the different definitions of the R 2 on test data is necessary to facilitate the reporting and interpretation of results on PRS generalizability. It is recommended to explicitly state which definition was used when reporting R 2 values on test data. Further research is warranted to develop and evaluate well-calibrated polygenic models for diverse populations.


Assuntos
Modelos Genéticos , Herança Multifatorial , Humanos , Fenótipo , Predisposição Genética para Doença
3.
Res Sq ; 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38903062

RESUMO

The most important factor that complicates the work of dysmorphologists is the significant phenotypic variability of the human face. Next-Generation Phenotyping (NGP) tools that assist clinicians with recognizing characteristic syndromic patterns are particularly challenged when confronted with patients from populations different from their training data. To that end, we systematically analyzed the impact of genetic ancestry on facial dysmorphism. For that purpose, we established the GestaltMatcher Database (GMDB) as a reference dataset for medical images of patients with rare genetic disorders from around the world. We collected 10,980 frontal facial images - more than a quarter previously unpublished - from 8,346 patients, representing 581 rare disorders. Although the predominant ancestry is still European (67%), data from underrepresented populations have been increased considerably via global collaborations (19% Asian and 7% African). This includes previously unpublished reports for more than 40% of the African patients. The NGP analysis on this diverse dataset revealed characteristic performance differences depending on the composition of training and test sets corresponding to genetic relatedness. For clinical use of NGP, incorporating non-European patients resulted in a profound enhancement of GestaltMatcher performance. The top-5 accuracy rate increased by +11.29%. Importantly, this improvement in delineating the correct disorder from a facial portrait was achieved without decreasing the performance on European patients. By design, GMDB complies with the FAIR principles by rendering the curated medical data findable, accessible, interoperable, and reusable. This means GMDB can also serve as data for training and benchmarking. In summary, our study on facial dysmorphism on a global sample revealed a considerable cross ancestral phenotypic variability confounding NGP that should be counteracted by international efforts for increasing data diversity. GMDB will serve as a vital reference database for clinicians and a transparent training set for advancing NGP technology.

4.
Nat Genet ; 56(8): 1644-1653, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39039281

RESUMO

Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Fenótipo , Humanos , Feminino , Masculino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Criança , Alemanha , Sequenciamento do Exoma/métodos , Adolescente , Estudos de Associação Genética/métodos , Testes Genéticos/métodos , Pré-Escolar , Estudos Prospectivos , Adulto , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Lactente , Adulto Jovem
5.
Med Genet ; 35(2): 115-121, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38840866

RESUMO

The use of next-generation sequencing (NGS) has dramatically improved the diagnosis of rare diseases. However, the analysis of genomic data has become complex with the increasing detection of variants by exome and genome sequencing. The American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) developed a 5-tier classification scheme in 2015 for variant interpretation, that has since been widely adopted. Despite efforts to minimise discrepancies in the application of these criteria, inconsistencies still occur. Further specifications for individual genes were developed by Variant Curation Expert Panels (VCEPs) of the Clinical Genome Resource (ClinGen) consortium, that also take into consideration gene or disease specific features. For instance, in disorders with a highly characerstic facial gestalt a "phenotypic match" (PP4) has higher pathogenic evidence than e.g. in a non-syndromic form of intellectual disability. With computational approaches for quantifying the similarity of dysmorphic features results of such analysis can now be used in a refined Bayesian framework for the ACMG/AMP criteria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa