Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arch Toxicol ; 89(9): 1469-95, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25975987

RESUMO

The increasing use of nanoparticles in products likely results in increased exposure of both workers and consumers. Because of their small size, there are concerns that nanoparticles unintentionally cross the barriers of the human body. Several in vivo rodent studies show that, dependent on the exposure route, time, and concentration, and their characteristics, nanoparticles can cross the lung, gut, skin, and placental barrier. This review aims to evaluate the performance of in vitro models that mimic the barriers of the human body, with a focus on the lung, gut, skin, and placental barrier. For these barriers, in vitro models of varying complexity are available, ranging from single-cell-type monolayer to multi-cell (3D) models. Only a few studies are available that allow comparison of the in vitro translocation to in vivo data. This situation could change since the availability of analytical detection techniques is no longer a limiting factor for this comparison. We conclude that to further develop in vitro models to be used in risk assessment, the current strategy to improve the models to more closely mimic the human situation by using co-cultures of different cell types and microfluidic approaches to better control the tissue microenvironments are essential. At the current state of the art, the in vitro models do not yet allow prediction of absolute transfer rates but they do support the definition of relative transfer rates and can thus help to reduce animal testing by setting priorities for subsequent in vivo testing.


Assuntos
Alternativas aos Testes com Animais , Modelos Biológicos , Nanopartículas/metabolismo , Animais , Técnicas de Cocultura , Humanos , Técnicas Analíticas Microfluídicas/métodos , Roedores , Distribuição Tecidual
2.
Anal Biochem ; 414(1): 77-83, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21354099

RESUMO

Activation of peroxisome proliferator-activated receptor γ (PPARγ) by ligands is associated with beneficial health effects, including anti-inflammatory and insulin-sensitizing effects. The aim of the current study was to develop luciferase reporter gene assays to enable fast and low-cost measurement of PPARγ agonist and antagonist activity. Two reporter gene assays, PPARγ1 CALUX and PPARγ2 CALUX, were developed by stable transfection of U2OS cells with an expression vector for PPARγ1 or PPARγ2 and a pGL3-3xPPRE-tata-luc or pGL4-3xPPRE-tata-luc reporter construct, respectively. PPARγ1 CALUX and PPARγ2 CALUX cells showed similar concentration-dependent luciferase induction upon exposure to the PPARγ agonists rosiglitazone, troglitazone, pioglitazone, ciglitazone, netoglitazone, and 15-deoxy-Δ(12,14)-prostaglandin J(2). The potency to induce luciferase decreased in the following order: rosiglitazone>troglitazone=pioglitazone>netoglitazone>ciglitazone. A concentration-dependent decrease in the response to 50nM rosiglitazone was observed on the addition of PPARγ antagonist GW9662 or T0070907 in both PPARγ1 CALUX and PPARγ2 CALUX cells. The PPARα agonists WY14643 and fenofibrate failed to induce luciferase activity, confirming the specificity of these cell lines for PPARγ agonists. In conclusion, PPARγ1 CALUX and PPARγ2 CALUX cells provide a reliable and useful tool to screen (bio)chemicals for PPARγ agonist or antagonist activity.


Assuntos
Técnicas de Cultura de Células/métodos , Genes Reporter , PPAR gama/genética , Linhagem Celular Tumoral , Humanos , Luciferases/genética , PPAR gama/agonistas , PPAR gama/antagonistas & inibidores , Tiazolidinedionas/farmacologia , Transfecção
3.
Toxicol Sci ; 162(1): 79-88, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29106689

RESUMO

In literature, varying and sometimes conflicting effects of physicochemical properties of nanoparticles (NPs) are reported on their uptake and effects in organisms. To address this, small- and medium-sized (20 and 50 nm) silver nanoparticles (AgNPs) with specified different surface coating/charges were synthesized and used to systematically assess effects of NP-properties on their uptake and effects in vitro. Silver nanoparticles were fully characterized for charge and size distribution in both water and test media. Macrophage cells (RAW 264.7) were exposed to these AgNPs at different concentrations (0-200 µg/ml). Uptake dynamics, cell viability, induction of tumor necrosis factor (TNF)-α, ATP production, and reactive oxygen species (ROS) generation were assessed. Microscopic imaging of living exposed cells showed rapid uptake and subcellular cytoplasmic accumulation of AgNPs. Exposure to the tested AgNPs resulted in reduced overall viability. Influence of both size and surface coating (charge) was demonstrated, with the 20-nm-sized AgNPs and bovine serum albumin (BSA)-coated (negatively charged) AgNPs being slightly more toxic. On specific mechanisms of toxicity (TNF-α and ROS production) however, the AgNPs differed to a larger extent. The highest induction of TNF-α was found in cells exposed to the negatively charged AgNP_BSA, both sizes (80× higher than control). Reactive oxygen species induction was only significant with the 20 nm positively charged AgNP_Chit.


Assuntos
Macrófagos/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata/química , Prata/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Macrófagos/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Tamanho da Partícula , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Prata/metabolismo , Propriedades de Superfície
4.
Toxicol In Vitro ; 29(7): 1701-10, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26145586

RESUMO

To obtain insight in translocation of nanoparticles across the placental barrier, translocation was studied for one positively and two negatively charged polystyrene nanoparticles (PS-NPs) of similar size in an in vitro model. The model consisted of BeWo b30 cells, derived from a human choriocarcinoma grown on a transwell insert forming a cell layer that separates an apical from a basolateral compartment. PS-NPs were characterized with respect to size, surface charge, morphology and protein corona. Translocation of PS-NPs was not related to PS-NP charge. Two PS-NPs were translocated across the BeWo transwell model to a lower extent than amoxicillin, a model compound known to be translocated over the placental barrier to only a limited extent, whereas one PS-NP showed a slightly higher translocation. Studies on the effect of transporter inhibitors on the translocation of the PS-NPs indicated that their translocation was not mediated by known transporters and mainly dependent on passive diffusion. It is concluded that the BeWo b30 model can be used as an efficient method to get an initial qualitative impression about the capacity of NPs to translocate across the placental barrier and set priorities in further in vivo studies on translocation of NPs to the fetus.


Assuntos
Nanopartículas/metabolismo , Placenta/metabolismo , Poliestirenos/metabolismo , Transporte Biológico , Linhagem Celular Tumoral , Feminino , Humanos , Gravidez
5.
J Agric Food Chem ; 61(14): 3419-27, 2013 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-23418723

RESUMO

Since beneficial effects related to tomato consumption partially overlap with those related to peroxisome proliferator-activated receptor γ (PPARγ) activation, our aim was to test extracts of tomato fruits and tomato components, including polyphenols and isoprenoids, for their capacity to activate PPARγ using the PPARγ2 CALUX reporter cell line. Thirty tomato compounds were tested; seven carotenoids and three polyphenols induced PPARγ2-mediated luciferase expression. Two extracts of tomato, one containing deglycosylated phenolic compounds and one containing isoprenoids, also induced PPARγ2-mediated expression at physiologically relevant concentrations. Furthermore, enzymatically hydrolyzed extracts of seven tomato varieties all induced PPARγ-mediated expression, with a 1.6-fold difference between the least potent and the most potent variety. The two most potent varieties had high flavonoid content, while the two least potent varieties had low flavonoid content. These data indicate that extracts of tomato are able to induce PPARγ-mediated gene expression in vitro and that some tomato varieties are more potent than others.


Assuntos
Frutas/química , PPAR gama/biossíntese , Extratos Vegetais/metabolismo , Solanum lycopersicum/química , Regulação para Cima , Linhagem Celular , Genes Reporter , Humanos , Hidrólise , PPAR gama/genética , Extratos Vegetais/análise , Polifenóis/análise , Polifenóis/metabolismo , Proteínas Recombinantes/biossíntese , Terpenos/análise , Terpenos/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa