Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 23(19): 11355-11365, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33972970

RESUMO

Trimethylamine N-oxide (TMAO) is a well known osmolyte in nature, which is used by deep sea fish to stabilize proteins against High Hydrostatic Pressure (HHP). We present a combined ab initio molecular dynamics, force field molecular dynamics, and THz absorption study of TMAO in water up to 12 kbar to decipher its solvation properties upon extreme compression. On the hydrophilic oxygen side of TMAO, AIMD simulations at 1 bar and 10 kbar predict a change of the coordination number from a dominating TMAO·(H2O)3 complex at ambient conditions towards an increased population of a TMAO·(H2O)4 complex at HHP conditions. This increase of the TMAO-oxygen coordination number goes in line with a weakening of the local hydrogen bond network, spectroscopic shifts and intensity changes of the corresponding intermolecular THz bands. Using a pressure-dependent HHP force field, FFMD simulations predict a significant increase of hydrophobic hydration from 1 bar up to 4-5 kbar, which levels off at higher pressures up to 10 kbar. THz spectroscopic data reveal two important pressure regimes with spectroscopic inflection points of the dominant intermolecular modes: The first regime (1.5-2 kbar) is barely recognizable in the simulation data. However, it relates well with the observation that the apparent molar volume of solvated TMAO is nearly constant in the biologically relevant pressure range up to 1 kbar as found in the deepest habitats on Earth in the ocean. The second inflection point around 4-5 kbar is related to the amount of hydrophobic hydration as predicted by the FFMD simulations. In particular, the blueshift of the intramolecular CNC bending mode of TMAO at about 390 cm-1 is the spectroscopic signature of increasingly pronounced pressure-induced changes in the solvation shell of TMAO. Thus, the CNC bend can serve as local pressure sensor in the multi-kbar pressure regime.

2.
J Phys Chem B ; 123(36): 7748-7753, 2019 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-31419128

RESUMO

High-precision THz (30 to 360 cm-1) spectra of bulk liquid water are presented from ambient conditions up to hydrostatic pressures of 10 kbar. In concert with ab initio simulations, this allows us to characterize the molecular-level changes of the H-bond network under solvent stress conditions. Both the experimental and theoretical THz spectra reveal a blue shift in the intermolecular translational mode at 180 cm-1 by 40 cm-1 at 10 kbar and a blue shift together with an intensity increase in the relaxation mode. These changes can be traced back to a pressure-induced increase of the population of so-called short H-bond double donor configurations at the expense of those with longer such intermolecular bonds. Distinct electronic polarization effects are critical to capture the characteristic intensity changes of the THz line shape function. These advances in high-pressure THz spectroscopy open the door to investigate the pressure response of solvation shells and solute-solvent couplings.

3.
J Phys Chem B ; 119(43): 13842-51, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26214376

RESUMO

We have studied the hydration dynamics of trimethylamine N-oxide (TMAO) in aqueous solution using a combination of concentration-dependent terahertz/far-infrared (THz/FIR) and Raman spectroscopic techniques. Terahertz/FIR absorption was measured using narrowband (76-93 cm(-1)) p-Ge laser and broad band (30-400 cm(-1)) Fourier transform spectroscopy. We used principal component analysis in combination with a semi-ideal chemical equilibrium model to dissect the spectra into linear and nonlinear contributions of the solvated solute extinction. We attribute the linear part to the average extinction and Raman scattering of TMAO-water aggregates with approximately 3-4 water strongly hydrogen bonded to TMAO. An additional nonlinear concentration dependence indicates a decrease of the number of attached water molecules with increasing TMAO concentrations due to a shift in association equilibria. The Raman spectra reveal a frequency shift of the (narrowband) intramolecular vibrations with decreasing dilution. Based on the results of a detailed analysis and isotopic substitution, the experimentally observed absorption bands at 0, 176, and 388 cm(-1) could be assigned to water relaxation modes, an intermolecular TMAO-H2O stretch, and the C-N-C bending mode, respectively. Our results provide evidence for a local modification of the water structure.


Assuntos
Metilaminas/química , Simulação de Dinâmica Molecular , Espectroscopia Terahertz , Ligação de Hidrogênio , Solubilidade , Soluções , Análise Espectral Raman , Água/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa