Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Chromatogr A ; 1730: 465060, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38861823

RESUMO

Hydrophilic interaction (liquid) chromatography (HILIC) has become the first choice LC mode for the separation of hydrophilic analytes. Numerous studies reported the poor retention time repeatability of HILIC. The problem was often ascribed to slow equilibration and insufficient re-equilibration time to establish the sensitive semi-immobilized water layer at the interface of the polar stationary phase and the bulk mobile phase. In this study, we compare retention time repeatability in HILIC for borosilicate glass and PFA (co-polymer of tetrafluoroethylene and perfluoroalkoxyethylene) solvent bottles. During this study, we observed peak patterns shifting towards higher retention times (for metabolites and peptides) and lower retention times (oligonucleotide sample) with ongoing analysis time when standard borosilicate glass bottles were used as solvent reservoirs. It was hypothesized that release of ions (sodium, potassium, borate, etc.) from the borosilicate glass bottles leads to alterations (thickness and electrostatic screening effects) in the semi-immobilized water layer which is adsorbed to the polar stationary phase surface under acetonitrile-rich eluents in HILIC with concomitant shifts in retention. When PFA solvent bottles were employed instead of borosilicate glass, retention time repeatability was greatly improved and changed from average 8.4 % RSD for the tested metabolites with borosilicate glass bottles to 0.14 % RSD for the PFA solvent bottles (30 injections over 12 h). Similar improvements were observed for peptides and oligonucleotides. This simple solution to the retention time repeatability problem in HILIC might contribute to a better acceptance of HILIC, especially in fields like targeted and untargeted metabolomics, peptide and oligonucleotide analysis.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Peptídeos/análise , Peptídeos/química , Fluorocarbonos/análise , Fluorocarbonos/química , Oligonucleotídeos/análise , Oligonucleotídeos/química , Solventes/química , Vidro/química
2.
J Pharm Biomed Anal ; 248: 116328, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943819

RESUMO

Oxylipins are important low abundant signaling molecules in living organisms. In platelets they play a primary role in platelet activation and aggregation in the course of thrombotic events. In vivo, they are enzymatically synthesized by cyclooxygenases, lipoxygenases, or cytochrome P450 isoenzmes, resulting in diverse polyunsaturated fatty acid (FA) metabolites including hydroxy-, epoxy-, oxo-FAs, and endoperoxides with pro-thrombotic or anti-thrombotic effects. In a recent study, it was reported that hemin induces platelet death which was accompanied by enhanced reactive oxygen species (ROS) production (measured by flow cytometry) and lipid peroxidation (as determined by proxy using flow cytometry with BODIPY-C11 as sensor). Lipidomic studies further indicated significant changes of the platelet lipidome upon ex vivo hemin treatment, amongst others oxylipins were increased. The effect could be (at least partly) reversed by riociguat/diethylamine NONOate diethylammonium salt (DEA/NO) which modulates the soluble guanylate cyclase(sGC)-cGMP-cGMP-dependent protein kinase I(cGKI) signaling axis. In the original work, oxylipins were measured by a non-enantioselective UHPLC-tandem-MS assay which may not give the full picture whether oxylipin elevation is due to ROS or by enzymatic processes. We present here the study of the stereochemical disposition of hemin-induced platelet lipidome alterations using Chiralpak IA-U column with amylose tris(3,5-dimethylphenylcarbamate) chiral selector immobilized on 1.6 µm silica particles. It was found that the major platelet oxylipins 12-HETE, 12-HEPE and 14-HDoHE (from 12-LOX) and 12-HHT (from COX-1) were present in S-configuration indicating their enzymatic formation. On the other hand, both R and S enantiomers of 9- and 13-HODE, 11- and 15-HETE were detected, possibly due to enzyme promiscuity rather than non-specific oxidation (by ROS or autoxidation), as confirmed by multi-loop based two-dimensional LC-MS using selective comprehensive mode with achiral RPLC in the 1st dimension and chiral LC in the 2nd using a multiple heart-cutting interface. For 12-HETrE, a peak at the retention time of the R-enantiomer was ruled out as isobaric interference by 2D-LC-MS. In particular, arachidonic acid derivates 12(S)-HHT, 11(R)-HETE and 15(S)-HETE were found to be sensitive to hemin and cGMP modulation.


Assuntos
Plaquetas , GMP Cíclico , Hemina , Oxilipinas , Espectrometria de Massas em Tandem , Oxilipinas/farmacologia , Oxilipinas/química , Espectrometria de Massas em Tandem/métodos , Estereoisomerismo , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , GMP Cíclico/metabolismo , Humanos , Hemina/metabolismo , Hemina/química , Cromatografia Líquida/métodos , Espécies Reativas de Oxigênio/metabolismo , Lipidômica/métodos , Peroxidação de Lipídeos/efeitos dos fármacos
3.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974119

RESUMO

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Assuntos
Proteína Quinase 10 Ativada por Mitógeno , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/química , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/química , Humanos , Proteína Quinase 10 Ativada por Mitógeno/metabolismo , Proteína Quinase 10 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 10 Ativada por Mitógeno/química , Sulfonas/química , Sulfonas/farmacologia , Estrutura Molecular , Solubilidade , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Relação Estrutura-Atividade , Acrilamidas/química , Acrilamidas/farmacologia , Acrilatos/química , Acrilatos/farmacologia , Ligação Proteica
4.
J Chromatogr A ; 1730: 465076, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879975

RESUMO

In recent years, many nucleic acid-based pharmaceuticals have been approved and entered the market, and even a larger number are in late stage clinical trials. Conventional oligonucleotides are facing issues in vivo like fast renal clearance and nuclease degradation. Therefore, to increase their stability, phosphorothioation is a frequent modification of therapeutic oligonucleotides (ONs) which also leads to improved binding affinity facilitating cell internalization and intracellular distribution. At the same time, by replacing a phosphodiester linkage with a phosphorothioate group, a phosphorous stereogenic center is generated which causes the formation of Rp- and Sp-diastereomers. It increases the structural diversity. For example, with 15 of those phosphorothioate (PS) linkages, 32,768 different diastereomers are expected. Since the phosphorothioate is introduced non-stereoselectively, the molecular complexity of the resultant phosphorothioate ON products is tremendously increased impeding the chromatographic separation in the course of quality control. Since distinct phosphorothioate diastereomers have different bioactivities and pharmacological properties, there is increasing interest in implications of stereoisomerism of phosphorothiate oligonucleotides. From a quality and regulatory viewpoint, batch-to-batch reproducibility of the diastereomer profile may be of significant concern. In order to address this issue, this study investigates the stereoselectivity of LC methods for two phosphorothioate oligonucleotide (PSO) compounds differing in their molecular size and numbers of PS linkages. Diastereoselectivity of ion-pairing reversed-phase liquid chromatography (IP-RPLC), RPLC without ion-pairing agents and LC with chiral polysaccharide-based column were evaluated for model PSOs and an active pharmaceutical ingredient (API) of PSO with trivalent N-acetylgalactosamine (GalNAc) conjugate. Due to the structural complexity of PSOs, the separation power for the diastereomer mixture was increased by using sequential selective comprehensive two-dimensional chromatography with an amylose tris(α-methylbenzylcarbamate)-immobilized chiral stationary phase (CSP) in the first dimension and ion-pair RPLC with ethylammonium acetate in the second dimension. Improved diastereomer selectivity was obtained and a larger number of peaks could be separated.


Assuntos
Cromatografia de Fase Reversa , Oligonucleotídeos Fosforotioatos , Oligonucleotídeos Fosforotioatos/química , Estereoisomerismo , Cromatografia de Fase Reversa/métodos , Reprodutibilidade dos Testes
5.
J Chromatogr A ; 1688: 463727, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36566570

RESUMO

In this study, the chromatographic behavior of mixed-mode and hydrophilic interaction liquid chromatography (HILIC) with the mixed-mode HILIC/strong anion-exchange (SAX) column HILICpak VT-50 2D and the two HILIC columns Atlantis Premier BEH Z-HILIC and Acquity Premier BEH Amide was assessed with regard to their separation capability of the metabolites from the glycolysis and pentose phosphate pathways. Chromatographic conditions were evaluated with the aim of achieving separation of the isomeric glycolytic phosphorylated carbohydrate metabolites free from isomeric interferences and thus allowing for selective targeted analysis by liquid chromatography with tandem mass spectrometry (MS/MS) using multiple reaction monitoring acquisition. The effects of pH values (8.0/9.0/10.0) of the ammonium bicarbonate buffer and gradient time were investigated during HILIC-MS/MS analysis, with the optimal conditions found at pH = 10.0. Separation of the pentose phosphate isomers (ribose 5- and 1-phosphate, xylulose 5-phosphate and ribulose 5-phosphate) was achieved on the mixed-mode HILIC/SAX (HILICpak VT-50 2D) column and HILIC BEH Amide column. Column performance was evaluated based on the direct comparison of chromatographic parameters, i.e. peak width at 50% and peak tailing factors of the individual metabolites. Parity plots were generated allowing a direct comparison between the normalized retention times and assessment of orthogonality of all 3 stationary phases evaluated. Separation of 7 biologically relevant hexose monophosphates metabolites turned out to be challenging by HILIC-MS/MS, with the BEH Amide providing the best individual results for such a separation. However, fructose 6-phosphate and glucose 1-phosphate co-eluted. Therefore, an on-line heart-cutting HILIC-Mixed Mode 2D-LC-QToF experiment was conducted, allowing the separation of this critical isomer pair. In this setup, the BEH Amide column in the 1D separated the majority of target metabolites, while a heart-cut of the peak from totally coeluted fructose 6-phosphate and glucose 1-phosphate was separated in the 2D with HILICpak VT50-2D column, thus allowing undisturbed determination of the glycolytic phosphorylated carbohydrate metabolites due to their chromatographic separation from hexose monophosphate metabolites. The assay specificity towards 7 common hexose monophosphates was characterized (glucose 1- and 6-phosphate, galactose 1- and 6-phosphate, fructose 6-phosphate, mannose 1- and 6-phosphate). The selectivity of some rare hexose monophosphates (allose 6-phosphate, tagatose 6-phosphate, sorbose 1-phosphate) was also tested.


Assuntos
Fosfatos Açúcares , Espectrometria de Massas em Tandem , Via de Pentose Fosfato , Cromatografia Líquida/métodos , Carboidratos , Glucose , Interações Hidrofóbicas e Hidrofílicas , Amidas , Fosfatos , Frutose
6.
J Pharm Biomed Anal ; 224: 115162, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36423498

RESUMO

This work reports on targeted UHPLC-tandem mass spectrometry methods for the chiral separation of anteiso-methyl branched fatty acids (aiFAs). The methods involve precolumn derivatization with 1-naphthylamine and chiral separation on Chiralpak IG-U. anteiso-Methyl branched fatty acids with up to eight carbons can be separated. A method was used for the assignment of the absolute configuration of an aiFA present as fatty acyl residue of the teicoplanin mixture, namely teicoplanin RS3. Furthermore, the excellent methylene selectivity and improved selectivity for constitutional isomers of the polysaccharide columns was exploited for the elucidation and structural confirmation of previously unknown fatty acyl residues in teicoplanin. This shows the versatility and practical applicability of polysaccharide columns as orthogonal stationary phases to reversed-phase for structural elucidation of natural compounds. The developed methods are useful tools for related subdisciplines such as targeted metabolomics and lipidomics.


Assuntos
Espectrometria de Massas em Tandem , Teicoplanina , Teicoplanina/química , Cromatografia Líquida de Alta Pressão/métodos , Ácidos Graxos , Polissacarídeos , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa