Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 295(50): 17158-17168, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33023907

RESUMO

Cellular energy demands are met by uptake and metabolism of nutrients like glucose. The principal transcriptional regulator for adapting glycolytic flux and downstream pathways like de novo lipogenesis to glucose availability in many cell types is carbohydrate response element-binding protein (ChREBP). ChREBP is activated by glucose metabolites and post-translational modifications, inducing nuclear accumulation and regulation of target genes. Here we report that ChREBP is modified by proline hydroxylation at several residues. Proline hydroxylation targets both ectopically expressed ChREBP in cells and endogenous ChREBP in mouse liver. Functionally, we found that specific hydroxylated prolines were dispensable for protein stability but required for the adequate activation of ChREBP upon exposure to high glucose. Accordingly, ChREBP target gene expression was rescued by re-expressing WT but not ChREBP that lacks hydroxylated prolines in ChREBP-deleted hepatocytes. Thus, proline hydroxylation of ChREBP is a novel post-translational modification that may allow for therapeutic interference in metabolic diseases.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/biossíntese , Regulação da Expressão Gênica , Glucose/metabolismo , Fígado/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células HEK293 , Humanos , Hidroxilação , Masculino , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Camundongos , Camundongos Transgênicos , Prolina/genética , Prolina/metabolismo
2.
J Biol Chem ; 293(39): 15269-15276, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-30126844

RESUMO

Retinol-binding protein 4 (RBP4) is the major transport protein for retinol in blood. Recent evidence from genetic mouse models shows that circulating RBP4 derives exclusively from hepatocytes. Because RBP4 is elevated in obesity and associates with the development of glucose intolerance and insulin resistance, we tested whether a liver-specific overexpression of RBP4 in mice impairs glucose homeostasis. We used adeno-associated viruses (AAV) that contain a highly liver-specific promoter to drive expression of murine RBP4 in livers of adult mice. The resulting increase in serum RBP4 levels in these mice was comparable with elevated levels that were reported in obesity. Surprisingly, we found that increasing circulating RBP4 had no effect on glucose homeostasis. Also during a high-fat diet challenge, elevated levels of RBP4 in the circulation failed to aggravate the worsening of systemic parameters of glucose and energy homeostasis. These findings show that liver-secreted RBP4 does not impair glucose homeostasis. We conclude that a modest increase of its circulating levels in mice, as observed in the obese, insulin-resistant state, is unlikely to be a causative factor for impaired glucose homeostasis.


Assuntos
Resistência à Insulina/genética , Fígado/metabolismo , Obesidade/genética , Proteínas Plasmáticas de Ligação ao Retinol/genética , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Glicemia , Dependovirus/genética , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica , Intolerância à Glucose/sangue , Intolerância à Glucose/genética , Hepatócitos/metabolismo , Humanos , Insulina/genética , Insulina/metabolismo , Síndrome Metabólica/sangue , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Camundongos , Obesidade/sangue , Obesidade/patologia , Vitamina A/sangue
3.
FASEB J ; 31(2): 732-742, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27811061

RESUMO

The ability to adapt cellular metabolism to nutrient availability is critical for survival. The liver plays a central role in the adaptation to starvation by switching from glucose-consuming processes and lipid synthesis to providing energy substrates like glucose to the organism. Here we report a previously unrecognized role of the tumor suppressor p53 in the physiologic adaptation to food withdrawal. We found that starvation robustly increases p53 protein in mouse liver. This induction was posttranscriptional and mediated by a hepatocyte-autonomous and AMP-activated protein kinase-dependent mechanism. p53 stabilization was required for the adaptive expression of genes involved in amino acid catabolism. Indeed, acute deletion of p53 in livers of adult mice impaired hepatic glycogen storage and induced steatosis. Upon food withdrawal, p53-deleted mice became hypoglycemic and showed defects in the starvation-associated utilization of hepatic amino acids. In summary, we provide novel evidence for a p53-dependent integration of acute changes of cellular energy status and the metabolic adaptation to starvation. Because of its tumor suppressor function, p53 stabilization by starvation could have implications for both metabolic and oncological diseases of the liver.-Prokesch, A., Graef, F. A., Madl, T., Kahlhofer, J., Heidenreich, S., Schumann, A., Moyschewitz, E., Pristoynik, P., Blaschitz, A., Knauer, M., Muenzner, M., Bogner-Strauss, J. G., Dohr, G., Schulz, T. J., Schupp, M. Liver p53 is stabilized upon starvation and required for amino acid catabolism and gluconeogenesis.


Assuntos
Privação de Alimentos/fisiologia , Hepatócitos/fisiologia , Fígado/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenilato Quinase/genética , Adenilato Quinase/metabolismo , Animais , Células Cultivadas , Fígado Gorduroso/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Inativação Gênica , Glicogênio/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Transcriptoma , Proteína Supressora de Tumor p53/genética
4.
Nat Struct Mol Biol ; 24(1): 15-22, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27892932

RESUMO

Circadian clocks are cell-autonomous oscillators regulating daily rhythms in a wide range of physiological, metabolic and behavioral processes. Feedback of metabolic signals, such as redox state, NAD+/NADH and AMP/ADP ratios, or heme, modulate circadian rhythms and thereby optimize energy utilization across the 24-h cycle. We show that rhythmic heme degradation, which generates the signaling molecule carbon monoxide (CO), is required for normal circadian rhythms as well as circadian metabolic outputs. CO suppresses circadian transcription by attenuating CLOCK-BMAL1 binding to target promoters. Pharmacological inhibition or genetic depletion of CO-producing heme oxygenases abrogates normal daily cycles in mammalian cells and Drosophila. In mouse hepatocytes, suppression of CO production leads to a global upregulation of CLOCK-BMAL1-dependent circadian gene expression and dysregulated glucose metabolism. Together, our findings show that CO metabolism is an important link between the basic circadian-clock machinery, metabolism and behavior.


Assuntos
Monóxido de Carbono/metabolismo , Relógios Circadianos , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Linhagem Celular Tumoral , Drosophila melanogaster , Glucose/metabolismo , Heme/metabolismo , Heme Oxigenase (Desciclizante)/fisiologia , Homeostase , Humanos , Masculino , Redes e Vias Metabólicas , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora , Ligação Proteica , Transcrição Gênica , Ativação Transcricional
5.
Endocrinology ; 156(11): 4008-19, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26181104

RESUMO

Reduced de novo lipogenesis in adipose tissue, often observed in obese individuals, is thought to contribute to insulin resistance. Besides trapping excess glucose and providing for triglycerides and energy storage, endogenously synthesized lipids can function as potent signaling molecules. Indeed, several specific lipids and their molecular targets that mediate insulin sensitivity have been recently identified. Here, we report that carbohydrate-response element-binding protein (ChREBP), a transcriptional inducer of glucose use and de novo lipogenesis, controls the activity of the adipogenic master regulator peroxisome proliferator-activated receptor (PPAR)γ. Expression of constitutive-active ChREBP in precursor cells activated endogenous PPARγ and promoted adipocyte differentiation. Intriguingly, ChREBP-constitutive-active ChREBP expression induced PPARγ activity in a fatty acid synthase-dependent manner and by trans-activating the PPARγ ligand-binding domain. Reducing endogenous ChREBP activity by either small interfering RNA-mediated depletion, exposure to low-glucose concentrations, or expressing a dominant-negative ChREBP impaired differentiation. In adipocytes, ChREBP regulated the expression of PPARγ target genes, in particular those involved in thermogenesis, similar to synthetic PPARγ ligands. In summary, our data suggest that ChREBP controls the generation of endogenous fatty acid species that activate PPARγ. Thus, increasing ChREBP activity in adipose tissue by therapeutic interventions may promote insulin sensitivity through PPARγ.


Assuntos
Adipócitos/metabolismo , Diferenciação Celular , Lipogênese , Proteínas Nucleares/metabolismo , PPAR gama/metabolismo , Fatores de Transcrição/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Linhagem Celular , Expressão Gênica , Glucose/metabolismo , Glucose/farmacologia , Células HEK293 , Humanos , Immunoblotting , Células-Tronco Mesenquimais/metabolismo , Camundongos , Proteínas Nucleares/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa