Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Tipo de estudo
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Theor Biol ; 539: 111059, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181285

RESUMO

Trade is a complex, multi-faceted process that can contribute to the spread and persistence of disease. We here develop novel mechanistic models of supply. Our model is framed within a livestock trading system, where farms form and end trade partnerships with rates dependent on current demand, with these trade partnerships facilitating trade between partners. With these time-varying, stock dependent partnership and trade dynamics, our trading model goes beyond current state of the art modelling approaches. By studying instantaneous shocks to farm-level supply and demand we show that behavioural responses of farms lead to trading systems that are highly resistant to shocks with only temporary disturbances to trade observed. Individual adaptation in response to permanent alterations to trading propensities, such that animal flows are maintained, illustrates the ability for farms to find new avenues of trade, minimising disruptions imposed by such alterations to trade that common modelling approaches cannot adequately capture. In the context of endemic disease control, we show that these adaptations hinder the potential beneficial reductions in prevalence such changes to trading propensities have previously been shown to confer. Assessing the impact of a common disease control measure, post-movement batch testing, highlights the ability for our model to measure the stress on multiple components of trade imposed by such control measures and also highlights the temporary and, in some cases, the permanent disturbances to trade that post-movement testing has on the trading system.


Assuntos
Gado , Animais
2.
R Soc Open Sci ; 8(3): 201715, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33959334

RESUMO

We develop and apply analytically tractable generative models of livestock movements at national scale. These go beyond current models through mechanistic modelling of heterogeneous trade partnership network dynamics and the trade events that occur on them. Linking resulting animal movements to disease transmission between farms yields analytical expressions for the basic reproduction number R 0. We show how these novel modelling tools enable systems approaches to disease control, using R 0 to explore impacts of changes in trading practices on between-farm prevalence levels. Using the Scottish cattle trade network as a case study, we show our approach captures critical complexities of real-world trade networks at the national scale for a broad range of endemic diseases. Changes in trading patterns that minimize disruption to business by maintaining in-flow of animals for each individual farm reduce R 0, with the largest reductions for diseases that are most challenging to eradicate. Incentivizing high-risk farms to adopt such changes exploits 'scale-free' properties of the system and is likely to be particularly effective in reducing national livestock disease burden and incursion risk. Encouragingly, gains made by such targeted modification of trade practices scale much more favourably than comparably targeted improvements to more commonly adopted farm-level biosecurity.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa