Assuntos
Acessibilidade aos Serviços de Saúde , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases/uso terapêutico , Tirosina Quinase 3 Semelhante a fms/antagonistas & inibidores , Adulto , Criança , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Tirosina Quinase 3 Semelhante a fms/genéticaRESUMO
The first series of chimeric antigen receptor T (CAR-T) cell therapy products were approved in 2017 to 2019 and have shown remarkable efficacy in both clinical trials and the real-world setting, but at the cost of prolonged patient hospitalization. As the toxicity management protocols were refined, the concept of cellular therapy administered in the outpatient setting gained steam, and single institutions began to perform certain aspects of CAR-T monitoring in the outpatient setting for select patients. However, there are many considerations for a successful outpatient program. In anticipation of increasing use of CAR-T-cell therapy in the outpatient setting as a mechanism to overcome frequent hospital bed shortages and high cost of inpatient care, the American Society for Transplantation and Cellular Therapy convened a group of experts in hematology, oncology, and cellular therapy to provide a comprehensive review of the existing publications on outpatient CAR-T cell therapy, discuss selected ongoing clinical trials of outpatient CAR-T, and describe strategies to optimize safety without compromising efficacy for patients treated and monitored in the outpatient setting.
Assuntos
Receptores de Antígenos Quiméricos , Humanos , Estados Unidos , Receptores de Antígenos Quiméricos/uso terapêutico , Pacientes Ambulatoriais , Imunoterapia Adotiva/efeitos adversos , Sociedades , Terapia Baseada em Transplante de Células e TecidosRESUMO
Consolidation with autologous hematopoietic stem cell transplantation (HSCT) has improved survival for patients with central nervous system tumors (CNSTs). The impact of the autologous graft CD34+ dose on patient outcomes is unknown. We wanted to analyze the relationship between CD34+ dose, total nucleated cell (TNC) dose, and clinical outcomes, including overall survival (OS), progression-free survival (PFS), relapse, non-relapse mortality (NRM), endothelial-injury complications (EIC), and time to neutrophil engraftment in children undergoing autologous HSCT for CNSTs. A retrospective analysis of the CIBMTR database was performed. Children aged <10 years who underwent autologous HSCT between 2008 to 2018 for an indication of CNST were included. An optimal cut point was identified for patient age, CD34+ cell dose, and TNC, using the maximum likelihood method and PFS as an endpoint. Univariable analysis for PFS, OS, and relapse was described using the Kaplan-Meier estimator. Cox models were fitted for PFS and OS outcomes. Cause-specific hazards models were fitted for relapse and NRM. One hundred fifteen patients met the inclusion criteria. A statistically significant association was identified between autograft CD34+ content and clinical outcomes. Children receiving >3.6×106/kg CD34+ cells experienced superior PFS (p = .04) and OS (p = .04) compared to children receiving ≤3.6 × 106/kg. Relapse rates were lower in patients receiving >3.6 × 106/kg CD34+ cells (p = .05). Higher CD34+ doses were not associated with increased NRM (p = .59). Stratification of CD34+ dose by quartile did not reveal any statistically significant differences between quartiles for 3-year PFS (p = .66), OS (p = .29), risk of relapse (p = .57), or EIC (p = .87). There were no significant differences in patient outcomes based on TNC, and those receiving a TNC >4.4 × 108/kg did not experience superior PFS (p = .26), superior OS (p = .14), reduced risk of relapse (p = .37), or reduced NRM (p = .25). Children with medulloblastoma had superior PFS (p < .001), OS (p = .01), and relapse rates (p = .001) compared to those with other CNS tumor types. Median time to neutrophil engraftment was 10 days versus 12 days in the highest and lowest infused CD34+ quartiles, respectively. For children undergoing autologous HSCT for CNSTs, increasing CD34+ cell dose was associated with significantly improved OS and PFS, and lower relapse rates, without increased NRM or EICs.
Assuntos
Neoplasias do Sistema Nervoso Central , Transplante de Células-Tronco Hematopoéticas , Humanos , Criança , Estudos Retrospectivos , Autoenxertos/química , Recidiva Local de Neoplasia/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Antígenos CD34/análise , Neoplasias do Sistema Nervoso Central/terapia , Neoplasias do Sistema Nervoso Central/etiologiaRESUMO
T cell-mediated hyperinflammatory responses, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), are now well-established toxicities of chimeric antigen receptor (CAR) T cell therapy. As the field of CAR T cells advances, however, there is increasing recognition that hemophagocytic lymphohistiocytosis (HLH)-like toxicities following CAR T cell infusion are occurring broadly across patient populations and CAR T cell constructs. Importantly, these HLH-like toxicities are often not as directly associated with CRS and/or its severity as initially described. This emergent toxicity, however ill-defined, is associated with life-threatening complications, creating an urgent need for improved identification and optimal management. With the goal of improving patient outcomes and formulating a framework to characterize and study this HLH-like syndrome, we established an American Society for Transplantation and Cellular Therapy panel composed of experts in primary and secondary HLH, pediatric and adult HLH, infectious disease, rheumatology and hematology, oncology, and cellular therapy. Through this effort, we provide an overview of the underlying biology of classical primary and secondary HLH, explore its relationship with similar manifestations following CAR T cell infusions, and propose the term "immune effector cell-associated HLH-like syndrome (IEC-HS)" to describe this emergent toxicity. We also delineate a framework for identifying IEC-HS and put forward a grading schema that can be used to assess severity and facilitate cross-trial comparisons. Additionally, given the critical need to optimize outcomes for patients experiencing IEC-HS, we provide insight into potential treatment approaches and strategies to optimize supportive care and delineate alternate etiologies that should be considered in a patient presenting with IEC-HS. By collectively defining IEC-HS as a hyperinflammatory toxicity, we can now embark on further study of the pathophysiology underlying this toxicity profile and make strides toward a more comprehensive assessment and treatment approach.
Assuntos
Linfo-Histiocitose Hemofagocítica , Síndromes Neurotóxicas , Adulto , Humanos , Estados Unidos , Criança , Linfo-Histiocitose Hemofagocítica/terapia , Linfo-Histiocitose Hemofagocítica/etiologia , Síndromes Neurotóxicas/etiologia , Linfócitos T , Imunoterapia Adotiva/efeitos adversos , Síndrome da Liberação de Citocina/terapia , Síndrome da Liberação de Citocina/complicaçõesRESUMO
Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive soft tissue sarcomas (STS) with nerve sheath differentiation and a tendency to metastasize. Although occurring at an incidence of 0.001% in the general population, they are relatively common in individuals with neurofibromatosis type 1 (NF1), for whom the lifetime risk approaches 10%. The staging of MPNSTs is complicated and requires close multi-disciplinary collaboration. Their primary management is most often surgical in nature, with non-surgical modalities playing a supportive, necessary role, particularly in metastatic, invasive, or widespread disease. We, therefore, sought to provide a comprehensive review of the relevant literature describing the characteristics of these tumors, their pathophysiology and risk factors, their diagnosis, and their multi-disciplinary treatment. A close partnership between surgical and medical oncologists is therefore necessary. Advances in the molecular characterization of these tumors have also begun to allow the integration of targeted RAS/RAF/MEK/ERK pathway inhibitors into MPNST management.
RESUMO
The treatment of many types of cancers, including acute myeloid leukemia (AML), has been revolutionized by the development of therapeutics targeted at crucial molecular drivers of oncogenesis. In contrast to broad, relatively indiscriminate conventional chemotherapy, these targeted agents precisely disrupt key pathways within cancer cells. FMS-like tyrosine kinase 3 (FLT3)-encoding a critical regulator of hematopoiesis-is the most frequently mutated gene in patients with AML, and these mutations herald reduced survival and increased relapse in these patients. Approximately 30% of newly diagnosed AML carries an FLT3 mutation; of these, approximately three-quarters are internal tandem duplication (ITD) mutations, and the remainder are tyrosine kinase domain (TKD) mutations. In contrast to its usual, tightly controlled expression, FLT3-ITD mutants allow constitutive, "run-away" activation of a large number of key downstream pathways which promote cellular proliferation and survival. Targeted inhibition of FLT3 is, therefore, a promising therapeutic avenue. In April 2017, midostaurin became both the first FLT3 inhibitor and the first targeted therapy of any kind in AML to be approved by the US FDA. The use of FLT3 inhibitors has continued to grow as clinical trials continue to demonstrate the efficacy of this class of agents, with an expanding number available for use as both experimental standard-of-care usage. This review examines the biology of FLT3 and its downstream pathways, the mechanism of FLT3 inhibition, the development of the FLT3 inhibitors as a class and uses of the agents currently available clinically, and the mechanisms by which resistance to FLT3 inhibition may both develop and be overcome.
RESUMO
Following its emergence in December 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused what rapidly became a global pandemic. The precise origin and subsequent path of transmission have not yet been established-but like the other novel coronaviruses that it closely resembles, it appears to have evolved naturally in a bat host. The disease caused by SARS-CoV-2 infection, designated as coronavirus disease 2019 (COVID-19), ranges from asymptomatic, to mild self-limited illness, to progressive pneumonia, respiratory compromise, multiorgan failure, and death. In addition, a hyperinflammatory disease state occurs in a subset of patients, and may be seen either during acute infection or following recovery. The search for effective pharmacological management of COVID-19 continues, but several promising candidates have been identified, including the viral nucleoside analog remdesivir. However, despite the existence of literally thousands of clinical trials, the management of COVID-19 remains challenging, and the development of an optimal, evidence-based therapeutic approach is ongoing. The impact of SARS-CoV-2 and COVID-19 on the biobanking world is evolving and profound-in particular, it is likely that many of mysteries surrounding COVID-19 will be solved via the availability of high-quality, large-scale collection, storage, and analysis of patient specimens. The purpose of this review article is therefore to provide a rapid, comprehensive, and relevant overview and primer on SARS-CoV-2 and COVID-19, with attention to the epidemiology, virology, transmission, clinical features, and major therapeutic options currently existent.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , COVID-19/epidemiologia , Pandemias , SARS-CoV-2 , Monofosfato de Adenosina/uso terapêutico , Alanina/uso terapêutico , HumanosRESUMO
A 14-month-old male presented with paroxysmal nocturnal dyspnea and grade III/VI systolic ejection murmur at the upper left sternal border with an S4 gallop and was subsequently found to have a right ventricular cardiac myxoma. Prior presentations of these tumors have been with exertional syncope and murmur, asymptomatic murmur, or exertional dyspnea; the presentation of such a tumor with paroxysmal nocturnal dyspnea is novel.